Scalable Replication in Database Clusters

M. Patino-Martinez, R. Jiménez-Peris B. Kemme, G. Alonso
Technical University of Madrid Swiss Federal Institute of Technology
Facultad de Informética Department of Computer Science
Boadilla del Monte ETH Zentrum (ETHZ)
Madrid, 28660, Spain CH-8092, Ziirich, Switzerland
{mpatino,rjimenez}@fi.upm.es {kemme,alonso}@inf.ethz.ch

Abstract. In this paper, we explore data replication protocols that pro-
vide both fault tolerance and good performance without compromising
consistency. We do this by combining transactional concurrency control
with group communication primitives. In our approach, transactions are
executed at only one site so that not all nodes incur in the overhead
of producing results. To further reduce latency, we use an optimistic
multicast technique that overlaps transaction execution with total order
message delivery. The protocols we present in the paper provide correct
executions while minimizing overhead and providing higher scalability.

1 Introduction

Conventional algorithms for database replication emphasize consistency and
fault tolerance instead of performance [BHG87]. As a result, database designers
ignore these algorithms and use lazy replication instead, thereby compromis-
ing both fault-tolerance and consistency [GHOS96]. A way out of this dilemma
[KA98,KA] is to combine database replication techniques with group communi-
cation primitives [HT93]. This approach has produced efficient eager replication
protocols that guarantee consistency and increase fault tolerance. However, in
spite of some suggested optimizations [KPAS99,PS98], this new type of pro-
tocols still have two major drawbacks. One is the amount of redundant work
performed at all sites. The other is the high abort rates created when consis-
tency is enforced. In this paper, we address these two issues. First, we present
a protocol that minimizes the amount of redundant work. Transactions, even
those over replicated data, are executed at only one site. The other sites only
install the final changes. With this, and unlike in existing replication protocols,
the aggregated computing power actually increases as more nodes are added.
This is a significant advantage in environments with expensive transaction pro-
cessing (e.g., dynamic web pages). A negative aspect of this protocol is that it
might abort transactions in order to guarantee serializability. To reduce the rate
of aborted transactions while still providing consistency, we propose a second
protocol based on a transaction reordering technique.

The paper is organized as follows. Section 2 introduces the system model.
Sections 3 and 4 describe the algorithms. Section 5 discusses fault tolerance
aspects. Section 6 contains the correctness proofs. Section 7 concludes the paper.

2 System Model

In a replicated database, a group of nodes N = {Ny, Ns, ..., N, }, each containing
the entire database, communicate by exchanging messages. Sites only fail by
crashing (no byzantine failures) and there is always at least one node available.

2.1 Communication Model

The system uses various group communication primitives [HT93]. Regarding
message ordering, we use a multicast primitive not providing any order, a primi-
tive providing FIFO order (messages of one sender are delivered in FIFO order)
and one providing a total order (all messages are delivered at all sites in the
same order). In regard to fault-tolerance, we use both a reliable delivery ser-
vice (whenever a message is delivered at an available site it will be delivered at
all available sites) and a uniform reliable delivery service (whenever a message
is delivered at any faulty or available site it will be delivered at all available
sites). We assume a virtual synchronous system, where all group members per-
ceive membership (view) changes at the same virtual time, i.e., two sites deliver
exactly the same messages before installing a new view.

We use an aggressive version [KPAS99] of the optimistic total order broadcast
presented in [PS98]. Each message corresponds to a transaction. Messages are
optimistically delivered as soon as they are received and before the definitive
ordering is established. With this, the execution of a transaction can overlap with
the calculation of the total order. If the initial order is the same as the definitive
order, the transactions can simply be committed. If the final order is different,
additional actions have to be taken to guarantee consistency. This optimistic
broadcast is defined by three primitives [KPAS99]. To-broadcast(m) broadcasts
the message m to all the sites in the system. Opt-deliver(m) delivers message
m optimistically to the application (with no order guarantees). To-deliver(m)
delivers m definitively to the application (in a total order). This means, messages
can be opt-delivered in a different order at each site, but are to-delivered in the
same total order at all sites. A sequence of opt-delivered messages is a tentative
order. A sequence of to-delivered messages is the definitive order or total order.
Furthermore, this optimistic multicast primitive ensures that every to-broadcast
message is eventually opt-delivered and to-delivered by every site in the system.
It also ensures that no site to-delivers a message before opt-delivering it.

2.2 Transaction Model

Clients interact with the database by issuing transactions, i.e., partially ordered
sets of read and write operations. Two transactions conflict if they access the
same data item and at least one of them is a write. A history H of committed
transactions is serial if it totally orders all transactions. Two histories H; and
H, are conflict equivalent, if they are over the same set of transactions and
order conflicting operations in the same way. A history H is serializable, if it
is conflict equivalent to some serial history [BHGS8T]. For replicated databases,

the correctness criterion is 1-copy-serializability [BHGS87]. Using this criterion,
each copy must appear as a single logical copy and the execution of concurrent
transactions must be equivalent to a serial execution over all the physical copies.

In this paper, concurrency control is based on conflict classes [KPAS99].
Each conflict class represents a partition of the data. Transactions accessing the
same conflict class have a high probability of conflicts, as they can access the
same data, while transactions in different partitions do not conflict and can be
executed concurrently. In [KPAS99] each transaction must access a single basic
conflict class (e.g., Cy). We generalize this model and allow transactions to access
compound conflict classes. A compound conflict class is a non-empty set of basic
conflict classes (e.g., {Cy, Cy}). We assume that the (compound) conflict class
of a transaction is known in advance. Each site has a queue C'Q); associated to
each basic conflict class Cz. When a transaction is delivered to a site, it is added
to the queues of the basic conflict classes it accesses. This concurrency control
mechanism is a simplified version of a lock table [GR93].

Each conflict class has a master site. We use a read-one/write-all available
approach. Queries (read only transactions) can be executed at any site using
a snapshot of the data (i.e., they do not interfere with update transactions).
Update transactions are broadcast to all sites, however they are only executed
at the master site of their conflict class. We say a transaction is local to the
master site of its conflict class and is remote everywhere else.

3 Increasing Scalability

3.1 The Problem and a Solution

The scalability of data replication protocols heavily depends on the update ratio.
To see why, consider a centralized system capable of processing ¢ transactions
per second. Now assume a system with n nodes, all of them identical to the
centralized one. Assume that the fraction of updates is w. Assume the load
of local transactions at a node is x transactions per second. Since nodes must
also process the updates that come from other nodes, the following must hold:
z+ w(n— 1)z =1, that is, a node processes z local transactions per second,
plus the percentage of updates arriving at other nodes (w) times the number
of nodes. From here, the number of transactions that can be processed at each
node is z = ¢t (1 + w (n — 1))~'. The total capacity of the system is n times
that expression which yields, with ¢ normalized to 1, n (1 + w (n — 1))~'. This
expression has a maximum of n when w = 0 (there are no updates) and a
minimum of 1 when w = 1 (all operations are updates).

Thus, as the update factor w approaches 1, the total capacity of the system
tends to that of a single node, independently of how many nodes are in the
system. Note that the drop in system capacity is very sharp. For 50 nodes,
w = 0.2 (20% updates) results in a system with a tenth of the nominal capacity.

This limitation can be avoided if transactions execute only at one site (the
local site) and the other sites only install the corresponding updates. This re-
quires significantly less than actually running the transactions as has been shown

in [KAO00]. In order to guarantee consistency, the total order established by the
to-delivery primitive is used as a guideline to serialize transactions. All sites see
the same total order for update transactions. Thus, to guarantee correctness, it
suffices for a site to ensure that conflicting transactions are ordered according to
the definitive order. Transactions can be executed in different orders at different
sites if they are not serialized with respect to each other.

When an update transaction 7' is submitted, it is multicast to all nodes. This
message contains the entire transaction and it is first opt-delivered at all sites
which can then proceed to add the corresponding entries in the local queues.
Only the local site executes T: whenever T is at the head of any of its queues
the corresponding operation is executed on a shadow copy of the data. With this,
aborting a transaction simply requires to discard the shadow copies. When the
transaction commits the shadow copies become the valid versions of the data.

When a transaction is to-delivered at a site, the site checks whether the
definitive and tentative orders agree. If they agree, the transaction can be com-
mitted after its execution has completed. If they do not agree, there are several
cases to consider. The first one is when the lack of agreement is with non-
conflicting transactions. In that case, the ordering mismatch can be ignored. If
the mismatch is with conflicting transactions, there are two possible scenarios.
If no local transactions are involved, the transaction can simply be resched-
uled in the queues before the transactions that are only opt-delivered but not
yet to-delivered. With this, to-delivered transactions will then follow the defini-
tive order. If local transactions are involved, the procedure is similar but local
transactions (that have been executed in the wrong order) must be aborted and
rescheduled again (by putting them back in the queues in the proper order).

Once a transaction is to-delivered and completely executed the local site
broadcasts the commit message containing all updates (also called write set
WS). Upon receiving a commit message (which does not need any ordering
guarantee), a remote site installs the updates for a certain basic conflict class as
soon as the transaction reaches the head of the corresponding queue. When all
updates are installed the transaction commits.

3.2 Example

Assume there are two basic conflict classes Cy, Cy and two sites N and N'. N
is the master of conflict classes {C,}, and {C;,Cy}. N’ is the master of {Cy}.
We denote the conflict class of a transaction T; by Cr,. Assume there are three
transactions, Cr, = {Cy, Cy}, Cr, = {Cy} and Cr, = {C;}. That is, T and T3
are local at N and T3 is local at N’. The tentative order at N is: Ty, Ty, T3 and
at N' is: Ty, T3, T1. The definitive order at both sites is: 17, Ty, T5. When all the
transactions have been opt-delivered, the queues at each site are as follows:

At N: At N':

CQ,=1T),T; CQ,=1T;5T

CQy=T,T CQy=1T2,T

At site V, Ty can start executing both its operations on C; and Cj since it
is at the head of the corresponding queues. When T3 is to-delivered the orders

are compared. In this case, the definitive order is the same as the tentative order
and hence, T1 can commit. When T3 has finished its execution, N will send a
commit message with all the corresponding updates. NV can then commit 77 and
remove it from the queues. The same will be done for T3 even if, in principle,
T, goes first in the final total order. However, since these two transactions do
not conflict, this mismatch can be ignored. Parallel to this, when N receives
the commit message for Ty from N’, the corresponding changes can be installed
since T} is at the head of the queue C'Q)y. Once the changes are installed, 75 is
committed and removed from C'Q,.

At site N/, Ty can start executing since it is local and at the head of its queue.
However, when Tj is to-delivered, N’ realizes that it has executed Ty out of order
and will abort Ty, moving it back in the queue. T is moved to the head of both
queues. Since T3 is remote at N’, moving T; to the head of the queue C'Q, does
not require to abort T5. T} is now the first transaction in all the queues, but it
is a remote transaction. Therefore, no transaction is executing at N'. When the
commit message of Ty arrives at N’, T1’s updates are applied, T; commits and
is removed from both queues. Then, T; will start executing again. When T; is
to-delivered and completely executed, a commit message with its updates will
be sent, and T5 will be removed from C'Q)y.

3.3 The NODO Algorithm

The first algorithm we propose, Nopo (NOn-Disjoint conflict classes and Opti-
mistic multicast), follows that in [KPAS99]. The algorithm is described according
to the different phases in a transaction’s execution: a transaction is opt-delivered,
to-delivered, completes execution, and commits. We assume access to the queues
is regulated by locks and latches [GR93]. There are some restrictions on when
certain events may happen. For instance, a transaction can only commit when
it has been executed and to-delivered. Waiting for the to-delivery is necessary
to avoid conflicting serialization orders at the different sites. Each transaction
has two state variables to ensure this behavior: The ezecution state of a trans-
action can be active (as soon as it is queued) or ezecuted (when its execution
has finished). A transaction can only become executed at its master site. The
delivery state can be pending (it has not been to-delivered yet) or committable
(it has been to-delivered). When a transaction is opt-delivered its state is set
to active and pending. In the following we assume that whenever a transaction
is local and the first one in any of its queues, the corresponding operations are
submitted for execution.

We assume that each of the phases is done in an atomic step. For instance,
adding a transaction to the different queues during opt-delivery or rescheduling
transactions during to-delivery is not interleaved with any other action. Note
that aborting a transaction simply involves discarding the shadow copy, the
transaction itself is kept in the queues but in different positions.

Upon complete execution of T;
If T; is marked as committable then
Broadcast commit(W St;)

Upon Opt-delivery of T;
Mark 7; as active and pending
For each conflict class C; € Cr,

Else
Erii)Fp((::'ld T; to the quene C'Qq Mark 7; as executed
EndIf
Upon TO-delivery of T;: Upon receiving commit (W St,)
Mark 7} as committable If = Local (T;) then
If T; is executed then Delay until T; becomes committable
Broadcast commit (W St,) For each C; € Cfr,
Else (still active or not local) When T; becomes the first in CQ
For each C; € Cf, Apply the updates of W ST,
If First(CQ.) = T; corresponding to Cj
A Local(T}) Remove T; from CQ.
A Pending(7;) then EndFor
Abort Tj Else
Mark 7} as active Remove T; from all Cr,
EndIf EndIf
Schedule T; before the first Commit T;
pending transaction in CQ,
EndFor
EndIf

4 Reducing Transaction Aborts

In the NoDpo algorithm, a mismatch between the local optimistic order and the
total order may result in a transaction being aborted. The resulting abort rate is
not necessarily very high since for this to happen, the transactions must conflict,
appear in the system at about the same time, and the site where the mismatch
occurs must be the local site where the aborted transaction was executing. In
all other cases there are no transaction aborts, only reschedulings. Nevertheless,
network congestion and high loads can lead to messages not being spontaneously
ordered and, thus, to higher abort rates. The number of aborted transactions
can be reduced by taking advantage of the fact that NoDo is a form of master
copy algorithm (remote sites only install updates in the proper order). Thus, a
local site can unilaterally decide to change the serialization order of two local
transactions (i.e., follow the tentative order instead of the definitive total order),
thereby avoiding the abort. To guarantee correctness, the local site must inform
the rest of the sites about the new execution order (by appending this informa-
tion to the commit message). Special care must be taken with transactions that
belong to a non basic conflict class (e.g., Cr, = {Cy, Cy}). A site can only follow
the tentative order Ty —opr T3 instead of the definitive order Ty —po Ti, if
T1’s conflict class C'p, is a subset of T5’s conflict class Cr, and botho are local
transactions. Otherwise, inconsistencies could occur. We call this new algorithm
REORDERING as the serialization order imposed by the definitive order might be
changed for the tentative one.

4.1 Example

Assume a database with two basic conflict classes Cp and Cj. Site N is the
master of the conflict classes {Cy } and {Cy, Cy}. N’ is the master of conflict class
{Cy}. To show how reordering takes place, assume there are three transactions
Cr, = Cp, = {C;,Cy}, and Cr, = {C}. All three transactions are local to V.
The tentative order at both sites is Ty, T3, 7. The definitive order is T7, T3, Ts.
After opt-delivering all transactions they are ordered as follows at both sites:

QC; : Ty, 13,Tq

QCy : T37 Tl

At site N, T> and T3 can start execution (they are local and are at the
head of one of their queues). Assume that Tj is to-delivered at this stage. In
the Nopo algorithm, 77 would be put at the head of both queues which can
only be done by aborting 75 and T5. This abort is, however, unnecessary since
N controls the execution of these transactions and the other sites are simply
waiting to be told what to do. Thus, NV can simply decide not to follow the total
order but serialize according to the tentative order. This is possible because all
transactions involved are local and the conflict classes of T5 and T3 are a subset
of T7’s conflict class. When such a reordering occurs, 77 becomes the serializer
transaction of Ty and T3. T3 does now not need to wait to be to-delivered to
commit. Being at the head of the queue and with its serializer transaction to-
delivered, the commit message for T, can be sent once T is completely executed
(thereby reducing the latency for T3). The commit message of T also contains
the identifier of the serializer transaction Tj. The same applies to T3.

Site N’ has at the beginning no information about the reordering. Thus,
not knowing better, when T} is to-delivered at N’, N’ will reschedule T} before
T, and T3 as described in the Nopo algorithm. However, when N’ receives
the commit message of T3, it realizes that a reordering took place (since the
commit message contains the information that 75 has been serialized before T1).
N’ will then reorder T, ahead of T} and mark it committable. N’, however,
only reschedules T, when 77 has been to-delivered in order to ensure 1-copy
serializability. The rescheduling of T3 will take place when the commit message
for T3 arrives, which will also contain 77 as the serializer transaction. In order to
prevent that T3 and T3 are executed in the wrong order at N’, commit messages
are sent in FIFO order (note, that FIFO is not needed in the Nopo algorithm).

As this example suggests, there are restrictions to when reordering can take
place. To see this, consider three transactions Cp, = {C;}, Cr, = {C,} and
Cr, = {Cy,Cy}. T1 and T; are local to N, T5 is local to N'. Now assume that
the tentative order at N is T3, T, T» and at N’ it is Ty, T, T3. The definitive
total order is Ty, T3, T5. After all three transactions have been opt-delivered the
queues at both sites look as follows:

Queues at site N: Queues at site N’:
QCI; : Tg, T1 ch : Tl, T3
QCy : Tg, TZ QCy : Tz, T3

Since T3 is local and it is at the head of its queues, IV starts executing Ts. For
the same reasons, N’ starts executing T. When T is to-delivered at N, T5 cannot

be reordered before Ti. Assume this would be done. T3 would commit and the
commit message would be sent to N’/. Now assume the following scenario at N'.
Before N’ receives the commit message for T3 both Ty and T, are to-delivered.
Since T3 is local, it can commit when it is executed (and the commit is sent to
N). Hence, by the time the commit message for T5 arrives, N’ will produce the
serialization order T — T5. At N, however, when it receives T3’s commit, it
has already committed T3. Thus, N has the serialization order T3 — T3, which
contradicts the serialization order at N'.

This situation arises because Cr, = {C,Cy} is not a subset of Cr, = {C;}
and, therefore, T} cannot be a serializer transaction for 7T3. In order to clarify
why subsets (i.e., the conflict class of the reordered transaction is a subset of
the conflict class of the serializer transaction) are needed for reordering, assume
that Ty also accesses Cy (with this, C'r, C Cr,). In this case, the queues are:

Queues at site N: Queues at site N’:
QCy: T3,Th QC:: Ty, T3
QCy : T3, 11, Ty QCy: T, T3, T3

The subset property guarantees that 77 conflicts with any transaction with
which T3 conflicts. Hence, 77 and T» conflict and N’ will delay the execution
and commitment of T3 until the commit message of T} is delivered. As the
commit message of the reordered transaction T3 will arrive before the one of
Ty, T3 will be committed before 77 and thus before T, solving the previous
problem. This means, that both N and N’ will produce the same serialization
order T3 — T7 — T5.

4.2 REORDERING Algorithm

In general, the REORDERING algorithm is similar to NODO except in a few points
(in the following we omit the actions upon opt-delivery since they are they same
as in the Nopo algorithm). The commit message must now contain the identifier
of the serializer transaction and follow a FIFO order. As in NoDoO, when a trans-
action T; is to-delivered, the transaction is marked as committable. At T;’s local
site, any non to-delivered local transaction T; whose conflict class C; is a subset
of Cr; and that precedes T; in the queues (reorder set RS) is marked as commit-
table (since now the commit order is no longer the definitive but the tentative
order). Thus, it is possible that when a reordered transaction is to-delivered the
transaction is already marked as committable or even has been committed. In
this case the to-delivery message is ignored. Local non to-delivered conflicting
transactions that cannot be reordered and have started execution are aborted
(abort set, AS). When the to-delivered transaction is remote, the algorithm
behaves as the NoDpo algorithm. Note that a remote reordered transaction T;
cannot commit at a site until its serializer transaction is to-delivered at that
site. When this happens, T; is rescheduled before its serializer transaction. The
rescheduling together with the FIFO ordering ensure that remote transactions
will commit at all sites in the same order in which they did at the local site.

Upon to-delivery of transaction T; Upon complete execution of T;
If = Committed(7;) A Pending(T;) then If T; is marked as committable then
(T; has not been reordered) Broadcast commit WSz, ser(1;)
If Local(T;) then Else
If T; is marked executed then Mark 7; as executed
Broadcast commit (WS, ;) EndIf
Else (T; has not finished yet)
AS =A{T;|Cr; NCr; #0ACr; € Cr, Upon receiving commit WSr, 1,
A 3C: € O, NCr;: T = First(CQ,) If not Local(T;) then
A Pending(T;) A Local(T;)} Delay until T} is committable
For each T; € AS If T; # T; then
(abort conflicting transactions that Mark T; as committable
cannot be reordered) EndIf
Abort T; and mark it as active EndIf
EndFor For each C; € Cf,
(try to reorder transactions) If not Local(7;) then
RS = {Tj|CTj COn AT =opt T If T; # T; then
A Pending(T;) A Local(T})} Reschedule T; just
For each T; € RS U{T;} before T; in CQ.
in opt-delivery order EndIf
Mark 7; as committable When T; becomes the first in CQ,
Mark T; as serializer (Ser) for Tj apply the updates of WST, 1,
Schedule T} before the first pending corresponding to Cy
transaction in all CQ.|T; € C, EndIf
EndFor Remove T; from CQ.
EndIf EndFor
Else (1t is a remote transaction) Commit T;

Mark 7; committable
For each conflict class C; € Cr,
If T; = First(CQz) A Pending(T})
A Local(T;) then
Abort T; and mark it as active
EndIf
Schedule T; before the first transaction
marked as pending in queue C'Q,
EndFor
EndIf
Else (transaction has been reordered)
Ignore the message

EndIf

5 Dealing with Failures

In our system, each site acts as a primary for the conflict classes it owns and as a
backup for all other conflict classes. In the event of site failures, the available sites
simply have to select a new master for the conflict classes of the failed node. The
new master will also take over the responsibility for all pending transactions

10

for which the failed node was the owner (i.e., where the commit message has
not been received by the available sites). Such a master replacement algorithm
guarantees the availability of transactions in the presence of failures. That is, a
transaction will commit as far as there is at least one available site.

For both algorithms, transaction messages must be uniformly multicast be-
cause only then it is guaranteed that the master will only execute and commit
a transaction when all sites will receive it, and thus, be able to take over if the
master crashes (reliable multicast does not provide this since the master can
commit a transaction which the other sites have not yet received).

In the Nopo algorithm, commit messages do not need to be uniform. Local
transactions can even be committed before multicasting the commit message.
The worst that can happen is that a master commits a transaction and fails
before the commit message reaches the other sites. When a new master takes
over, it will reexecute the transaction and send a new commit message. As the
total order is always followed inconsistencies cannot arise.

In the REORDERING algorithm, commit messages must be uniform and the
master may not commit the transaction before the commit message is delivered.
If the commit message were not uniform, a master could reorder a transaction,
send the commit message and then crash. If the rest of the replicas do not see
the commit message, they would use a different serialization order (as the failed
node’s optimistic order is unknown to the other sites).

6 Correctness

In this section we prove the correctness (i.e., 1-copy-serializability), liveness,
and consistency of the protocols. The proofs assume histories encompassing sev-
eral group views. Important for both protocols is the fact that transactions are
enqueued (respectively rescheduled) in one atomic step. Hence, there is no in-
terleaving between transactions and all sites produce automatically serializable
histories. As a result, in order to prove l-copy-serializability, it suffices to show
that all histories are conflict equivalent. Since conflict equivalence requires his-
tories to have the same set of transactions, we refer in the corresponding proofs
only to the available sites.

6.1 Correctness of NODO

We will show that all sites order conflicting transactions according to the defini-
tive total order.

Definition 1 (Direct conflict). Two transactions Ty and Ty are in direct con-
flict if they are serialized with respect to each other, Ty — Ty, and there are no
transactions serialized between them: AT | Ty — Ts — Ts.

Lemma 1 (Total order and Serializability in NODO). Let Hy be the
history produced at site N, let T1 and Ty be two directly conflicting transactions
n HN. Ile —>TO Tg then T1 —Hx Tg.

11

Proof (lemma 1): Assume the lemma does not hold, i.e., there is a pair of
transactions Ty, Ty such that Ty — g, Ty but To —7o Ti. The fact that T,
precedes T7 in the total order means that Ty was to-delivered before Ty. Since T
and T are in direct conflict, there was at least one queue where both transactions
had entries. If Ty —> g, T», then the entry for 71 must have been ahead in the
queue. However, upon to-delivery of T, if T} was the first transaction, Nobpo
would have aborted 77 and rescheduled it after T5. If 77 was not the first in the
queue, NonDO would have put Ty ahead of T in the queue. In both cases this
would result in Ty — 5, Th which contradicts the initial assumption. O

Lemma 2 (Conflict equivalence in NODO). For any two sites N and N’,
Hpy is conflict equivalent to Hy:.

Proof: (lemma 2) ;From Lemma 1, all pairs of directly conflicting transactions
in both Hy and Hpy are ordered according to the total order. Thus, Hy and
Hy+ are conflict equivalent since they are over the same set of transactions and
order conflicting transactions in the same way. ad

Theorem 1 (1ICPSR in NODO). The Nobpo algorithm produces 1-copy-
serializable histories.

Proof: (theorem 1) Since the histories of all available nodes are conflict equiva-
lent (lemma 2) and serializable, the global history is 1-copy-serializable. a

6.2 Liveness of NODO

Theorem 2 (Liveness in NODO). Fach to-delivered transaction T; eventu-
ally commits in the absence of catastrophic failures.

Proof: (theorem 2) The theorem is proved by induction.
Induction Basis: Let T; be the first to-delivered transaction. Upon to-delivery,
each site places T; at the head of all its queues. Thus, T;’s master can execute
and commit 7;, and then multicast the commit message. Remote sites will apply
the updates and also commit T;.
Induction Hypothesis: The theorem holds for the to-delivered transactions with
positions n < k, for some k£ > 1, in the definitive total order, i.e., all transactions
that have at most & — 1 preceding transactions will eventually commit.
Induction Step: Assume that transaction T; is at position n = k+1 in the defini-
tive total order when it is to-delivered. Each node places T; in the corresponding
queues after any committable transaction (to-delivered before T;) and before any
pending transaction (not yet to-delivered). All committable transactions that are
now ordered before T; have lower positions in the definitive total order. Hence,
they will all commit according to the induction hypothesis and be removed from
the queues. With this, T; will eventually be the first in each of its queues and,
as in the induction basis, eventually commit.

In all cases, if the master fails before the other sites have received the commit,
the new master will reexecute 7T; and resend the commit message. a

12

6.3 Consistency of NODO

Failed sites obviously do not receive the same transactions as available sites. Let
T be the subset of transactions to-delivered to a node before it failed.

Theorem 3 (Consistency of failed sites with NODO). All transactions,
T;, T; € T, that are committed at a failed node N are committed at all available
nodes. Moreover, the committed projection of the history in N is conflict equiva-
lent to the committed projection of the history of any of the available nodes when
this history is restricted to the transactions in T .

Proof: (theorem 3) A transaction 7; can only commit at N when it is to-
delivered. Since we use uniform reliable delivery, T; will also be to-delivered and
known at all available sites. If T; was not local at N, then N must have received
a commit message from 7;’s master. If this master is available for sufficient time
all other available sites will also receive the commit message. If the master fails
a new master will take over, execute T; and resend the commit. This procedure
will repeat if the new master also fails before the rest of the system receives the
commit message. Since we assume there are some available nodes, eventually
one of these nodes will become the master and the transaction will commit. If
the transaction was local at IV, the same argument applies. The equivalence of
histories follows directly from Lemma 2. a

6.4 Correctness of REORDERING

In the REORDERING algorithm it is not possible to use the total order as a
guideline since nodes can reorder local transactions. Thus, we start by proving
that transactions not involved in a reordering cannot get in between the serializer
and the transaction being reordered. Let Ty be the serializer transaction of the
transactions in the set 7Tr,.

Lemma 3 (Reordered). A reordered transaction T; is always serialized before
its serializer transaction Ty, that is, if T; € Tp, then T, — T;.

Proof (lemma 3): Tt follows trivially from the algorithm. O

Lemma 4 (Serializer in REORDERING). For all transactions T;, T; € Tr,
there is no transaction T;, T; ¢ Tr,, such that T; — T; — Ts.

Proof (lemma 4): Assume that N is the master site where the reordering takes
place. Since Ty is the serializer of T;, T; —opr Ts, and Ts —7o T;. Addition-
ally, from Lemma 3 T; — 7. There are two cases to consider: (a) T; —ro T
and (b) Ts —TO T7

(a): since Tj is to-delivered before Ty, in the queues Tj is before Tj, and T; is
before T,. With T; ahead of their queues, 7; and T cannot be committed until
T; commits. Thus, T; cannot be serialized in between T; and 7.

(b): since Ty is to-delivered before T; and T; ¢ Tr,, all sites will put T, ahead
of T; in the queues (T; cannot have committed because it has not yet been

13

to-delivered), if it was not the case. Since Cr, C Cr,, this effectively prevents
transactions from getting in between T; and T,. Any transaction T; trying to do
so will conflict with T, and since T; has been to-delivered before T;, T; has to
wait until 75 commits. By that time, T; will have committed at its master site
and its commit message will have been delivered and processed at all sites before
the one of T,. Therefore, the final serialization order will be T; — Ty — T;. O

Lemma 5 (Conflict Equivalence in REORDERING). For any two sites
N and N', Hy is conflict equivalent to H .

Proof: (lemma 5) We show that two directly conflicting transactions Ty and Tj
with conflict classes C, and Cr, are ordered in the same way at N and N'. We
have to distinguish several cases:

e Cp, C Cr,, Ty and Ty have the same master N, and To —ro Th:

(a) If N reorders Ty and T, with respect to the total order, then, from
Lemma 4, no transaction T; € Tr, can be serialized in between. The commit for
Ty will be sent before the commit for T3 in FIFO order. Hence, all sites will then
execute T before T.

(b) If N" follows the total order to commit 77 and T5, then other sites cannot
change this order. The argument is similar to that in Lemma 1 and revolves about
the order in which transactions are committed at all sites.

e Cp, C Cr,, Ty and T have the same master N, and Ty —1o Th:

(¢) If Cr, = Cr, then cases (a) and (b) apply exchanging Ty and T.

(d) Otherwise C, C Cr,. In this case, N” has no choice but to commit Ty
and Ty in to-delivery order (the rules for reordering do not apply). From here,
and using the same type of reasoning as in Lemma 1, it follows that all sites
must commit 77 before T5.

e either C'r, C C7, and Ty and T3 do not have the same master, or C, NC, # 0}
and neither Cp, ¢ Cr, nor Cr, ¢ Cr,.

(e) If Ty or T are involved in any type of reordering at their nodes, Lemma 4
guarantees that there will be no interleavings between the transactions involved
in the reordering and the other transaction. Thus, one transaction will be com-
mitted before the other at all sites and, therefore, all sites will produce the same
serialization order.

(f) If T4 and T are not involved in any reordering, then similar to Lemma
1, both of them will be scheduled in the same (total) order at all sites and then
committed.

(] CT1 ﬂCT2 = 0.

(g) Tf there is no serialization order between T and Ty then they do not need
to be considered for equivalence.

(h) If there is a serialization order between Tj and T, it can only be indirect.
Assume that in N: Ty... — T; — T;41 —> ...Ts. Between each pair of
transactions in that sequence, there is a direct conflict. Thus, for each pair, the
above cases apply and all sites order the pair in the same way. From here it
follows that T; and T, are also ordered in the same way at all sites. O

14

Theorem 4 (1ICPSR in REORDERING). The REORDERING algorithm pro-
duces 1-copy-serializable histories.

Proof: (theorem 4) ;From Lemma 5, all histories are conflict equivalent. More-
over, they are all serializable. Thus, the global history is 1-copy-serializable. O

6.5 Liveness of REORDERING

Theorem 5 (Liveness in REORDERING). Each to-delivered transaction
T; eventually commits in the absence of catastrophic failures.

Proof: (theorem 5) The proof is by induction.

Induction Basis: Let T; be the first to-delivered transaction. Upon to-delivery,
each remote site will place T; at the head of all its queues. At the local node,
there might be some reordered transactions before T; hence, T; will be their
serializer. All these transactions can be executed and committed, so that T; will
eventually be executed and committed. Remote sites will apply the updates of
the reordered transactions and T; in FIFO order and will also commit T;.
Induction Hypothesis: The theorem holds for the to-delivered transactions with
positions n < k, for some k£ > 1, in the definitive total order, i.e., all transactions
that have at most & — 1 preceding transactions will eventually commit.
Induction Step: Assume that transaction T; is at position n = k 4+ 1 in the
definitive total order when it is to-delivered. There are two cases:

a) T; is reordered. This means there is a serializer transaction 7; with a
position n < k in the total order and 7; is ordered before T};. Since T}, according
to the induction hypothesis, commits and T; is executed and committed before
T; at all sites, the theorem holds.

b) T; is not a reordered transaction. T; will be rescheduled after any commit-
table transaction and before any pending transaction. There exist two types of
committable transactions rescheduled before T;.

i. Not reordered transactions: They have a position n < k and will therefore
commit and be removed from the queues according to the induction hypothesis.

ii. Reordered transactions: Each reordered transaction that is serialized by
transaction Ty # T; will commit before Ty, and T will commit according to the
previous point (i). All transactions T; € 77, (i.e., T; is the serializer) are ordered
directly before T; in the queues (Lemma 3). Let Ty be the first not reordered
transaction before this set of reordered transactions. Ty will eventually commit
according to the previous point (i), and therefore also all transactions in 77, and
T; itself.

Failures lead to masters reassignment but do not introduce different cases to
the above ones. a

6.6 Consistency of REORDERING

Again, let 7 be the subset of transactions to-delivered to a node before it failed.

15

Theorem 6 (Consistency of failed sites with REORDERING). All ¢rans-
actions, T;, T; € T, that are committed at a failed node N are committed at all
available nodes. Moreover, the committed projection of the history in N, is con-
flict equivalent to the committed projection of the history of any of the available
nodes when this history is restricted to the transactions in T.

Proof: (theorem 6) Since both transaction and commit messages are sent with
uniform reliable multicast, all transactions and their commit messages in 7 have
been to-delivered to all available sites and can therefore commit at all sites. The
equivalence of histories, follows directly from Lemma 5. a

7 Conclusions

In this paper, we have proposed two replication protocols for cluster based appli-
cations. These protocols solve the scalability problem of existing solutions and
minimize the number of aborted transactions. We are currently implementing
and experimentally evaluating the protocols and, as part of future work, we will
deploy a web farm with a replicated database built upon these protocols. For
this purpose we will use TransLib [JPABO00], a group-based TP-monitor.

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Conirol and
Recovery in Database Systems. Addison Wesley, Reading, MA, 1987.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers of Replication
and a Solution. In Proc. of the SIGMOD, pages 173-182, Montreal, 1996.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[HT93] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Prob-
lems. In S. Mullender, editor, Distributed Systems, pages 97-145. Addison
Wesley, Reading, MA, 1993.

[JPABOO] R. Jiménez Peris, M. Patino Martinez, S. Arévalo, and F.J. Ballesteros.
TransLib: An Ada 95 Object Oriented Framework for Building Dependable
Applications. [Int. Journal of Computer Systems: Science & Engineering,
15(1):113-125, January 2000.

[KA] B. Kemme and G. Alonso. A new approach to developing and implementing
eager database replication protocols. ACM TODS, to appear.

[KA98] B. Kemme and G. Alonso. A Suite of Database Replication Protocols based
on Group Communication Primitives. In Proc. of 18th IEEFE Int. Conf. on
Distributed Computing Systems (ICDCS), pages 156-163, 1998.

[KA00] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new
way to implement database replication. In Proc. of the Int. Conf. on Very
Large Databases (VLDB), Cairo, Egypt, September 2000.

[KPAS99] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing Transactions
over Optimistic Atomic Broadcast Protocols. In Proc. of 19th IEEE Int.
Conf. on Distributed Computing Systems (ICDCS), pages 424-431, 1999.

[PS98] F. Pedone and A. Schiper. Optimistic Atomic Broadcast. In S. Kutten,
editor, Proc. of 12th Distributed Computing Conference, volume LNCS 1499,
pages 318-332. Springer, September 1998.

