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Abstract. Middleware tools are generally used to glue together dis-
tributed, heterogeneous systems into a coherent composite whole. Unfor-
tunately, there is no clear conceptual framework in which to reason about
transactional correctness in such an environment. This paper is a first
attempt at developing such framework. Unlike most existing systems,
where concurrent executions are controlled by a centralized scheduler,
we will assume that each element in the system has its own independent
scheduler receiving input from the schedulers of other elements and pro-
ducing output for the schedules of yet other elements in the system. In
this paper we analyze basic configurations of such composite systems and
develop correctness criteria for each case. Moreover, we also show how
these ideas can be used to characterize and improve different transaction
models such as distributed transactions, sagas, and federated database
transactions.

1 Introduction

Composite systems consist of several components interconnected by middleware.
Components provide services which are used as building blocks to define the ser-
vices of other components as shown in fig. 1. This mode of operation is widely
used, for instance, in TP-Monitors or CORBA based systems. To achieve true
plug and play functionality, each component should have its own scheduler for
concurrency control and recovery purposes. Unfortunately, most existing the-
ory addresses only the case of schedulers with a single level of abstraction [6].
This is unnecessarily narrow: it hinders the autonomy of components and, by
neglecting to take advantage of the available semantic information, also restricts
the degree of parallelism. Except for open nested, multi-level transactions [14],
almost no attention has been devoted to the case were several schedulers are
interconnected with the output of one scheduler being used as the input to the
next. In this paper, we address this problem by determining what information
a scheduler must provide to another to guarantee global correctness while still
preserving the autonomy of each scheduler. Based on multilevel [4,14], nested [9],
and stack-composite [1] transactions we develop a theory that allows composite
systems to be understood w.r.t. correct concurrent access. Of all possible con-
figurations, we consider here only a few important cases: stacks, forks, and joins
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Stock_Check (Item#13)

x := QTY_AT_HAND (Item#13);
y := PENDING_ORDERS (Item#13);
if x < y then 

Order_Amount := y - x + Minimum_Stock;
Place_Order (Item#13, Order_Amount);

Fill Out Request Form
Create Record of Request

EXEC SQL UPDATE Request_List
SET Amount = :Order_Amount
WHERE Item = :Item#

INTO :Amount
FROM Orders

EXEC SQL SELECT #Ordered

WHERE Item = :Item#

INTO :QTY
FROM Stock_List

EXEC SQL SELECT Available

WHERE Item = :Item#
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Fig. 1. An example transaction in a composite system

(see fig. 2) and simple combinations of them. The idea is to use these as building
blocks that can later help us to understand and model more complex cases. We
see the contribution of our paper in providing a formal basis for correctness in
these architectures. In addition, we show how several classical problems of trans-
action management can be expressed and explained in a coherent manner using
the proposed framework, without having to resort to separate models for each
case. In particular, we prove this by showing that traditional distributed transac-
tions, sagas, and federated databases (global and local transactions) are special
cases of our model. The paper is organized as follows. Section 2 presents the
transaction model and introduces conflict consistency as our basic correctness
criterion. Section 3 discusses correct concurrent executions in stacks, forks, and
join schedules and introduces a simple combination of forks and joins. Section 4
discusses distributed transactions, sagas and federated transactions within the
framework of composite schedulers. Finally, section 5 concludes the paper with
a brief summary of the results and future work.

2 Conflict Consistency

In this section, we present our basic correctness criteria. These serve as a neces-
sary preparation for the rest of the paper, where it becomes obvious how opera-
tions of a scheduler act as transactions in other schedulers. In what follows, we
assume familiarity with concurrency control theory [5].
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2.1 The New Model

When executing transactions, a scheduler restricts parallelism because it must,
first, observe the order constraints between the operations of each transaction
and, second, impose order constraints between conflicting operations of different
transactions. The restriction in parallelism occurs because, in a conventional
scheduler, ordered operations are executed sequentially. As shown in [1], this
is too restrictive. It is often possible to parallelize concurrent operations even
when they conflict as long as the overall result is the same as if they were
executed sequentially. This requires to relax some of the ordering requirements
of traditional schedulers. In addition, when several schedulers are involved, a
mechanism is needed to specify to a scheduler what is a correct execution from
the point of view of the invoking scheduler. For these two purposes we use the
notion of weak and strong orders (assumed to be transitively closed):

Definition 1 (Strong and Weak Order:). Let A and B denote any tasks
(actions, transactions).

– Sequential (strong) order: A � B, A has to complete before B starts.
– Unrestricted parallel execution: A‖B, A and B can execute concurrently

equivalent to any order, i.e., A � B or B � A.
– Restricted parallel (weak) order: A < B, A and B can be executed concur-

rently but the net effect must be equivalent to executing A � B. 2

From here, and independently of the notion of equivalence used, it follows that
turning a weak order into a strong one leads to correct execution since this im-
plies sequential execution. In fact, traditional flat schedulers with only one level
of abstraction, do just this, if two tasks conflict they impose a strong order be-
tween them. When moving to a composite system with several schedulers, it is
often possible to impose a weak order instead of a strong one, thereby increas-
ing the possibility of parallelizing operations. Thus, the aim will be to impose
either no orders or only weak orders while still preserving global correctness and
characterize the exchange of information between schedulers in terms of these
orders. Note that in our model, weak and strong orders are requirements and
not observed (temporal) orders. A strong order implies a temporal one, but not
the other way round. In figure 3, t3 is weakly input-ordered before t1, and the
serialisation order is according to it. Therefore, the execution is correct. How-
ever, t1 is temporally ordered before t3 (the execution order is indicated by the
position: left comes first). This shows that the temporal order may be irrelevant.
In other words, order preservation as postulated in [3] is not required in our
model. With these ideas, a transaction is now defined as follows. Let Ô be the
set of all operations of a scheduler with which transactions can be formed.

Definition 2 (Transaction). A transaction, t, is a triple (Ot, <t, �t), where
Ot is a set of operations taken from Ô, <t is a partial order on Ot termed the
weak (intra-)transaction order, and �t is a partial order on Ot termed the strong
(intra-)transaction order. For consistency we require �t ⊆ <t. 2
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Since now we have operations being executed at different schedulers, a modified
notion of conflict is needed. Let CON ⊆ Ô × Ô be a conflict predicate that
expresses whether two operation invocations commute. We say that two opera-
tions, o and o′, commute if there is no difference in return values of the sequence
α o o′ β compared to α o′ o β for all sequences α and β with elements from
Ô [13]. Therefore, commutativity is not an absolute property but is relative to
the given set of (allowed) operation invocations. From here, we say that two
operations conflict if they do not commute, which also includes the case when it
is unknown whether they commute or not. In practice, in a composite system,
two operations conflict if there is a potential flow of information between them.
With this, now we have all the necessary elements to formally define a scheduler:

Definition 3 (Schedule). A schedule S is a five-tuple (T,→, 7→, <,� ), where:

– T is a set of transactions.
Let O denote the set of all operations of T ’s transactions, i.e., O =

⋃
t∈T Ot.

– → and 7→ are the weak and strong input orders, partial orders over T with
7→ ⊆ →.

– < and � are the weak and strong output orders, partial orders over O such
that:
1. ∀t, t′ ∈ T, t 6= t′, ∀o ∈ Ot, ∀o′ ∈ Ot′ , CON(o, o′) :

(a) (t→t′) ⇒ (o < o′)
(b) (t′→t) ⇒ (o′ < o)
(c) otherwise: (o < o′) ∨ (o′ < o)

2. (a) ∀t ∈ T, ∀o, o′ ∈ Ot : (o <t o′) ⇒ (o < o′),
(b) ∀t ∈ T, ∀o, o′ ∈ Ot : (o �t o′) ⇒ (o � o′),

3. Whenever t 7→ t′, then ∀o ∈ Ot, ∀o′ ∈ Ot′ : o � o′,
4. � ⊆ <. 2

According to point 1, a scheduler must weakly order every pair of conflicting op-
erations without contradicting the weak input order, if any, between the parent
transactions (otherwise, as we will see below, a cycle would immediately appear).
Point 2 ensures well-formedness, that is, all weak and strong transaction orders
are contained in the weak and strong output orders, respectively. Point 3 prop-
agates the strong input order from the transactions to their operations, thereby
separating the execution tree of strongly ordered transactions. Point 4 guaran-
tees that the output orders of a scheduler are consistent between them. It is not
stated explicitly that if at least one of two weakly output ordered operations is
a leaf, then they are also strongly ordered. This is an evident requirement.

2.2 Conflict Consistency

The distinction between the two orderings requires to modify the traditional
notion of correctness. We will assume, as usual, that a transaction executed in
isolation is correct.

Definition 4 (Serial Schedule).
A schedule S is serial if 7→S is a total order, i.e., ∀t, t′ ∈ T : (t 7→t′) ∨ (t′ 7→t). 2
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Note that serial schedule does not mean that all operations are executed serially.
Operations within one transaction can be executed in parallel. In a serial schedule
we have 7→ = →. Following the classical approach, we can now define the new
correctness criterion, called conflict consistency.

Definition 5 (Conflict Consistency (CC)).
A schedule S is conflict consistent if there is a serial schedule Sser, whose strong
input and weak output order contain the weak input and output order of S, resp.,
i.e., (→S ⊆ 7→Sser ) ∧ (<S ⊆ <Sser). 2

The name conflict consistency expresses that the order of all conflicting opera-
tions must be consistent with the weak input order, i.e., the serialisation order
must not contradict the weak input order. This can be further formalized as
follows:

Definition 6 (Serialisation Graph ↪→). Given a schedule S, its serialisation
graph, denoted ↪→, is a transitive irreflexive binary relation on T × T , in which
t↪→t′ is contained if t 6= t′ and ∃o ∈ Ot, ∃o′ ∈ Ot′ : CON(o, o′) ∧ (o < o′) 2

Theorem 1. A schedule S is conflict consistent iff the union of its weak input
order and its serialisation graph (↪→S ∪ →S) is acyclic. 2

This can be proven by constructing a total order containing the union of weak
order and serialisation graph, thereby defining a serial schedule with the same
weak output order (see appendix). This theorem does not take explicitly into
account the strong input order since it is contained in the weak one (see def. 3).

Compared to [1] we simplified the definitions: we dropped the notion of equiv-
alent schedules and we included a clearer presentation of order constraints.

2.3 Recovery

For a formal treatment of recovery, we use the unified theory for concurrency
control and recovery [2,13]. This theory is based on an expanded schedule which
is used to represent the transaction’s recovery operations explicitly, i.e., in every
schedule each abort is replaced by the corresponding inverse operations (“un-
dos”) in the appropriate order. It has been shown that ordering commits in
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the order of conflicting operations and aborts in the opposite direction (SOT
in [13]) leads to correct concurrency control and recovery. In order to achieve
this, every scheduler must automatically generate the appropriate invocations of
inverse operations properly ordered in case of a failure. If inverse operations are
not available we will assume that a scheduler defers the commit of all operations
that do not have inverses. A more comprehensive treatment of recovery is beyond
the scope of this paper. We will concentrate here on concurrency control.

3 Composite Systems

In a composite system, every server has a scheduler S and provides a set ÔS

of operation invocations to be used to build transactions (the server’s services),
i.e., an operation of a scheduler can be and often will be a transaction of another
one. Every scheduler S has a commutativity specification expressed by the con-
flict predicate CONS . Every scheduler works locally ensuring correctness with
respect to its (local) CONS . The question to address is how to guarantee global
correctness in such a scenario and what information is needed at each scheduler
to guarantee global correctness.

3.1 Stack Schedules

Stack schedulers take the output of one scheduler and use it directly as input
to the next (see fig. 4). Transactions can have different depths, but operations
at the same level are always processed by the same scheduler. This structure
is a generalization of multi-level and nested transactions [10,4,3,14] and it can
be found in the internal structure of many systems. The notion of stack used
in this paper is taken from [1]. Here, in addition, we prove correctness of stack
schedules.

Definition 7 (Stack Schedule (SS)).
SS, an n-level stack schedule, consists of n schedules S1, . . . , Sn, such that, for
1 < i ≤ n:
• TSi−1 = OSi • →Si−1 = <Si • 7→Si−1 = �Si 2
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This definition states that operations and their output orders are transactions
and input orders of the next lower schedule. The important aspect of definition 3
together with this definition is the way in which orders are propagated. Only
the strong ordering is automatically propagated to all levels, thereby ensuring
that if two transactions are strongly ordered, their execution trees will not be
interleaved at any lower level. The weak order is propagated from one level to
the next only if the operations involved conflict. If there is no weak input order
among the parents, but two children operations conflict, the scheduler introduces
a weak output order.

Definition 8 (Stack Conflict Consistency (SCC)). An n-level stack sched-
ule SS is stack conflict consistent iff each individual schedule Si in SS is conflict
consistent, for 1 ≤ i ≤ n. 2

Theorem 2. A stack schedule is correct if it is SCC. 2

We prove this theorem by constructing a serial execution of all transactions of
all levels, i.e., on all levels all transactions are strongly ordered (see appendix).

Notice that conflict consistency requires the existence of a serial schedule,
where each transaction is executed serially, but not necessarily its operations.
The advantage of SCC is that as long as each level independently enforces CC,
the overall execution is correct. The weak order constraint and its careful prop-
agation through the stack is important because often we do not know whether
operations conflict or not. In these cases, one has to be careful and assume that
they conflict. In contrast to existing multilevel transaction models [3,14], such
a weak order constraint is irrelevant if there is no actual conflict at the next
level. In [1], it is shown that SCC is a larger class than order preserving seri-
alisability [3] and level-by-level serialisability [14], the two existing comparable
criteria. Because we allow weak orders within transactions, SCC is also larger
than multi-level-serialisability (MLSR in [14]).

3.2 Fork Schedules

In a fork (fig. 5), the output of a schedule is used as input to several other
schedulers. Each pair top-level/lower-level scheduler can be seen as a stack and,
indeed, it will follow the rules defined for stack schedulers. More formally:

Definition 9 (Fork Schedule (FS)). A fork schedule FS consists of (n+1)
schedules SF , S1, . . . , Sn, such that:

1. OSF =
⋃n

i=1 TSi

2. ∀i ∈ {1, . . . , n} : ∀t, t′ ∈ TSi :
{

t <SF t′ ⇒ t→Sit
′

t �SF t′ ⇒ t 7→Sit
′

3. ∀(oi, oj), oi ∈ OSi , oj ∈ OSj , i 6= j, we assume oi and oj commute. 2

The output orders <SF and �SF of SF are passed to the related component Si

as input orders. Note that every operation in SF is sent to only one scheduler
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Si as a transaction. In “pure” forks we assume that invocation hierarchies are
completely separated. No information flows from Si to Sj or vice versa. This
is why we assume that operations commute (point 3). Therefore, every weak
order between two operations going to different schedulers Si and SJ disappears.
However, every weak order between two operations going to the same scheduler
Si is transformed to an input order in Si, so this scheduler takes care of it. For
instance, the execution in figure 6 is a correct pure fork. Pure forks are very
common in practice, as shown in figure 1.

Definition 10 (Fork Conflict Consistency (FCC)). A fork schedule FS
is fork conflict consistent (FCC), if the schedule SF is conflict consistent and⋃n

i=1 (↪→Si ∪ →Si) is acyclic. 2

Theorem 3. An execution in a fork schedule is correct iff it is FCC. 2

This can be proven by constructing an equivalent stack schedule (see appendix).
FCC is a global criterion. Since we want to check for correctness locally, each
scheduler should be able to decide independently if the schedule is correct or
not. This can be done as follows:

Theorem 4 (Criterion for Fork Conflict Consistency). A fork schedule
FS is fork conflict consistent, iff each of the schedules SF , S1, . . . , Sn is conflict
consistent. 2

This can be proven by dividing (↪→Si ∪ →Si) into subgraphs of the different
schedules and considering their connections to each other (see appendix).

Forks (fig. 6) are a straightforward extension of stacks. The criterion for forks
becomes more complicated when we allow that operation invocation hierarchies
are not separated, i.e., when after the fork, it is possible to have a join schedule.
This case is discussed in the next section.

3.3 Join Schedules

Join schedulers1 entail several top schedulers whose outputs go to a common,
single low-level scheduler (figure 7), called SJ . Joins are common at the resource

1 Join schedules are not to be confused with join-transactions introduced in [11]
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manager level, where a single resource manager is being accessed by several
servers simultaneously. Again, each pair top-level/low-level schedule behaves like
a stack, but care must be taken to avoid inconsistencies. For this purpose, con-
flicts must be assumed between operations of different higher level schedulers.
The formal definition of join schedule is a straightforward extension of that of
stacks: the output of the top-level schedulers (operations, and weak and strong
orders) is used as the input to the lower-level scheduler (abusing notation, also
called join schedule). Thus,

Definition 11 (Join Schedule (JS)). A join schedule JS consists of (n+1)
schedules SJ , S1, . . . , Sn, such that:

• ⋃n
i=1 OSi = TSJ • ∀i ∈ {1, . . . , n} : ∀t, t′ ∈ OSi :

{
t <Si t′ ⇒ t→SJ t′

t �Si t′ ⇒ t 7→SJ t′ 2

Intuitively, since the lower level schedule follows the input orders provided, each
pair top-level/lower-level scheduler behaves like a stack. From a correctness point
of view, it remains to be determined whether and how to interleave transactions
from different schedulers. The problems to avoid are illustrated in figures 8 and 9.

Assume two users, each one operating on one of two top-level schedulers in
a join. In figure 8 the information flow from T1 to T2 and back can be detected
neither by SJ nor S1 nor S2. This problem could be solved if, for instance, SJ

would build the serialisation graph based on the root transactions, which would
result in a cycle. In figure 9, however, this does not help because the information
flows from T2 to T3 to T1. The cycle can only be detected when considering the
weak input order between T1 and T2.

In other words, assume T1 and T2 were directly given to SJ and not to S1 and
S2 as before. Then SJ would directly reject the execution because it is not CC.
To capture these situations we introduce the ghost-graph. Let Act(T ) represent
the children of transaction T at all levels below that in which T appears.

Definition 12 (Ghost-Graph for Join Schedules(.JS)).
∀(T, T ′) with T ∈ TSi , T

′ ∈ TSj , i 6= j the ghost-graph .JS is defined as:
T.JST ′ if there are children t, t′ of T, T ′, resp., with t, t′ ∈ TSJ and t↪→SJ t′. 2



Transactions in Stack, Fork, and Join Composite Systems 159

Definition 13 (Join Conflict Consistency (JCC)). A join schedule JS is
join conflict consistent, if the schedule SJ is conflict consistent and .JS ∪⋃n

i=1 (↪→Si ∪ →Si) is acyclic. 2

This definition matches the intuition that a join schedule should be considered
correct if the whole stack schedule built from all partial schedules – together
with the implicit (ghost) orderings between different schedules – is SCC.

Theorem 5. An execution in a join schedule is correct iff it is JCC. 2

This can be proven by constructing an equivalent stack schedule that is SCC
(see appendix). As pointed out above, the idea is that each scheduler will be
able to make decisions locally. The criterion JCC, however, is a global property
that cannot be enforced locally. Fortunately we can artificially generate weak
input orders between all sub-transactions of transactions that come from differ-
ent schedulers. The weak input order expresses the fact that we must assume a
conflict between operations of such transactions. Remember that the weak in-
put order generally stems from output orderings of conflicting operations at a
level above. Since there is no common level above, we do not know about the
commutativity of such operations and, therefore, must assume a conflict. This
idea is formalized as follows:

Definition 14 (Completed Join Schedule (CJS)). A completed join sched-
ule CJS is a JS with additional input order compatible with:
∀Si, Sj, i 6= j : (∀t ∈ TSi, ∀t′ ∈ TSj : t→t′) ∨ (∀t ∈ TSi, ∀t′ ∈ TSj : t′→t) 2

Theorem 6 (Criterion for JCC). A completed join schedule CJS is JCC, if
each of the schedules SJ , S1, . . . , Sn is conflict consistent. 2

This locally testable criterion for JCC can be proven by reducing the ghost-graph
to weak input orders between transactions of different schedules (see appendix).

From here, if each transaction that arrives at SJ contains the information
about its parent scheduler, SJ can impose the additional weak input orderings.
Then SJ can decide locally about correctness of the join schedule. In figures 8
and 9, SJ would impose an order from inc(x,10) and inc(x,6) to inc(x,5%)
or vice versa. So, a cycle in the union of weak input order and serialisation graph
of SJ would be detected.

Note that there exist JCC join schedules that cannot be transformed into
a correct CJS. Counterexamples are join schedules whose ghost-graph builds a
cycle “between schedules” but not between transactions. CJS is a purely static
notion and cannot be used in practice for dynamic scheduling. Dynamic schedul-
ing in these scenarios is a complex problem which can be addressed by adding
further restrictions to the execution but which is beyond the scope of this paper.

3.4 FDBS-Schedules

The FDBS-schedule will be used later to describe federated databases. A feder-
ated database can be described by a fork schedule with additional schedules at
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the same level as SF , one virtual schedule SLi for each local transaction tLi (see
figure 11):

Definition 15 (FDBS-Schedule (FDS)). An FDBS-schedule FDS consists
of (n+l+1) schedules SF , SL1, . . . , SLl, SJ1, . . . , SJn, such that:

1. OSF ∪
⋃l

i=1 OSLi =
⋃n

i=1 TSJi

2. ∀i ∈ {1, . . . , l} : TSLi = {tLi}, OTLi = {oLi}
3. ∀i ∈ {1, . . . , n} : ∀t, t′ ∈ TSJi :

{
t <SF t′ ⇒ t→SJit

′

t �SF t′ ⇒ t 7→SJit
′

2

FDBS-schedules have the same problems as a join. Thus, to define correctness,
we use a similar notion:

Definition 16 (Ghost-Graph for FDBS-Schedules(.FDS)).
∀(T, T ′) with T ∈ TS, T ′ ∈ TS′ , S, S′ ∈ {SF , SL1, . . . , SLl}, S 6= S′ the ghost-
graph .FDS is defined as:
T .FDS T ′ if there are children t, t′ of T, T ′, resp., with t, t′ ∈ TSJi(i ∈ {1, . . . , l})
and t↪→SJit

′. 2

Not surprisingly, FDBS conflict consistency can be defined as join conflict con-
sistency.

Definition 17 (FDBS Conflict Consistency (FDCC)). An FDBS-schedule
FDS is FDBS conflict consistent, if the schedules SJ1 . . . SJn are conflict consis-
tent and . ∪ (↪→SF ∪ →SF ) is acyclic. 2

Theorem 7. An execution in an FDBS-schedule is correct iff it is FDCC. 2

This can be proven by constructing an equivalent stack schedule (see appendix).
Note that serialisation graphs and weak input orders can not appear in the “local
schedules” SLi since they are only virtual schedules. Thus, since FDCC cannot
be applied locally we have to seek another criterion. For this, we define:

Definition 18 (Completed FDBS-Schedule (CFDS)). A completed FDBS-
schedule CFDS is an FDS with additional conflicts: CONSF := CONSF ∪
{(o, o′) | o ∈ Ot, o

′ ∈ Ot′ , t 6= t′, t, t′ ∈ TSF , ∃i : (o, o′ ∈ TSJi)}
Note that this implies that SF has to weakly order these extra conflicts, as re-
quired by its CC property. 2

Now, a CFDS is correct (FDCC), if the following holds:

Theorem 8 (Criterion for FDCC). A completed FDBS-schedule CFDS is
FDCC, if
(1) each of the schedules SF , SL1 . . . SLl, SJ1 . . . SJn is conflict consistent and
(2) if @t, t′ ∈ OT , T ∈ TSF : (t, t′ ∈ TSJj (j ∈ {1 . . . n}, ∃tL1 . . . tLk ∈

⋃l
i=1 OSLi :

(t↪→SJj tL1↪→SJj . . . ↪→SJj tLk↪→SJj t
′)). 2

The last condition means that in any SJj no local transactions must be serialised
between global (sub-)transactions of the same parent (=transaction in SF ). We
prove this theorem by assuming a cycle in the union of input, serialisation and
ghost-order and showing a contradiction to CC of SF (see appendix).



Transactions in Stack, Fork, and Join Composite Systems 161

t1

S1 S2

2t t3t4 t1

T T’ S

t4tt2 3<< <<

F

CON
<

Fig. 10. An MDBS with par-
tially non-conflicting subtrans-
actions.

t3

t1

t1 t4 2t

SF
<~

<~

S1 S2

T T’

t4tt2 3<< <<

CON

t

T

t

<

SL1

L1

L1

L1

Fig. 11. FDBS: example.

4 Existing Composite Transaction Models

In this section we describe several transaction models using the ideas above. In
particular, we consider distributed transactions, sagas, and federated database
transactions. These models are two-level models: transactions consist of sub-
transactions considered as operations at the top-level, and executed as transac-
tions at the lowest level. Top-level transactions are called global transactions,
operations in global transactions are global subtransactions and transactions
circumventing the global layer are called local transactions.

4.1 Distributed (Multi-database) Transactions

The model of interest here is often referred to as multidatabase system (MDBS).
Following the usual terminology, Ti(i = 1, 2, ..., n) are global transactions. Each
global transaction is decomposed into global subtransactions, tij , encompassing
all operations to be executed at the component databases, Sj(j = 1, ..., m).
For FS, the set TSF is the set of global transactions and OSF is the union of all
subtransactions tij . For the weak and strong input order we set→SF = 7→SF = ∅.
For the bottom schedulers Sj , the set TSj of transactions are the subtransactions
tij . OSj is the set of operations at Sj to be executed for all tij . In the classical
treatment of distributed transactions nothing is known about the commutativity
of subtransactions. This is expressed in the scheduler SF by assuming a conflict
between every pair of subtransactions: tij conflicts with trs ⇔ i 6= r ∧ j = s.
Therefore SF orders all such pairs the same way: For all i1, i2 ∈ {1, 2, ...n} :
If ti1j1 < ti2j1 ⇒ ti1j2 < ti2j2 . Otherwise ↪→SF would by cyclic. Therefore the
weak input order imposed to all component schedulers is the same for all Sj .
According to FCC all Sj are CC. From there FCC - in this special MDB setting
- requires that all serialisation orders be the same.

This result clearly is not surprising and corresponds to the usual understand-
ing. The advantage of our treatment is that several points become clear. First,
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without further semantic knowledge the technique cannot be improved. Second,
and more importantly, as soon as the SF scheduler has information about the
commutativity of the subtransactions, we can drop the related weak order con-
straint imposed to the corresponding Sj scheduler. Such an example is shown
in figure 10, where there is no conflict between t1 and t4, thus allowing the
serialisation order from t4 to t1.

Now, with respect to recovery, usually we do not assume to have inverses for
global subtransactions. Therefore SF must defer the commit of every subtrans-
action tij up to the commit of the global transaction Ti. This calls for atomic
commitment as it is known. However, we can easily prove that, as soon as there
are inverses t−1

ij known to some tij , the scheduler can early commit such tij and,
in case of failure, do recovery at the SF level.

4.2 Sagas

A saga [7] Ti is a logical unit of work and shall be executed as a whole or not
at all. It consists of a (partially) strongly ordered set of (sub-)transactions tij .
Each transaction has an inverse t−1

ij for compensation in case of recovery. With
respect to concurrency, a saga does allow any kind of interleaving w.r.t. other
concurrent sagas.

Let us describe sagas in a two-level stack or fork schedule consisting of a top-
level schedule and one or more bottom-level schedules. The top-level scheduler
assumes commutativity of all transaction pairs (tij , trs), i 6= r. Therefore no
weak output order is generated and imposed as input to the bottom schedulers.
No constraints are imposed over the serialisation orders of the subtransactions
executed in Sj.

Again, this result is not surprising. However, as before we can easily incor-
porate the fact that not all transactions commute and not all transactions have
inverses.

In comparison with distributed transactions and in summing up we have
the following observation: Distributed transactions correspond to a fork schedule
where the transactions of different sagas conflict and no inverse transaction is
known. Sagas correspond to the case where the transactions of different sagas
commute and every transaction has an inverse. From here, it is clear that our
general fork schedule encompasses all cases “in between” these two extremes,
i.e., if some transactions commute or if some transactions have inverses.

4.3 Federated Transactions

Federated transactions are a generalization of MDB transactions in that local
transactions tLk circumvent the top-level scheduler and directly enter the bot-
tom scheduler SJj (fig. 11). We have modelled this by a fork schedule with
an (artificial) additional schedule SLk at the same level as SF for every local
transaction TLk, which we called an FDBS-Schedule (section 3.4). A correct
FDBS is ensured by having the FDCC property, as mentioned earlier. Given
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this property, we easily relate special results obtained in the context of multi-
level transactions [12]. There a “dynamic” conflict relation to be used by the
top-level scheduler was introduced in order to capture indirect conflicts between
local transactions and global subtransactions. This corresponds to the additional
edges of the ghost-graph in SF of definition 16.

As a practical method, [12] have proposed to introduce two kinds of com-
mits: a commit with respect to other global subtransactions at the end of every
subtransaction and a commit with respect to local transactions at the end of
the global transaction. As a simple method for an implementation with locking,
it was proposed to have “retained” locks, i.e. locks that are kept until the end
of the global transaction to shield against local transactions. Such locks are not
visible to other global subtransactions. The effect of this locking scheme is that
no ghost order can arise between active transactions. As a result, the ghost order
represents a temporal relationship reflecting the fact that two transactions were
executed serially with respect to each other, making cycles impossible.

The FDCC property also allows a simple explanation of the ticket method
for federated databases [8]. In this method, all global transactions have at most
one operation at each local (join) site, hence there is no need for the join to check
whether a local transaction is serialized between two global subtransactions of
the same root. Furthermore, a global transaction must read and increase the
value of a counter at each site. A global commit is done only if there is no
cycle based on the ticket orders between different global transactions. Because
there is no input order in traditional schedulers, this method has to rely on the
ticket values to determine the serialization order at the local databases. The
assumption that every pair of operations conflict (see definition 18) is translated
here in the fact that a value has to be updated by each transaction, forcing all
of them to conflict.

5 Conclusion

In this paper, we have developed a framework to reason about correctness in
composite systems. Our main goal has been to allow individual components to
decide locally while still ensuring global correctness and to determine what in-
formation needs to be provided to each scheduler in order to do so. We use the
notion of conflict consistency to restrict correct executions to those consistent
with the information passed to a scheduler (weak and strong input orders). Based
on conflict consistency, correctness criteria for several configurations (stack, fork,
and join) have been developed. These criteria characterize all correct and only
correct executions. In particular, if the composite system has a tree configura-
tion (no joins), it suffices to enforce conflict consistency locally to obtain global
correctness. If joins are involved, however, additional restrictions are necessary
since the criteria provided are based on non-local information (the ghost graph).
As the example with federated transactions shows, it is still possible to design
dynamic criteria for configurations containing joins in spite of the static na-
ture of the criterion for joins. As an additional contribution, we have described
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known transaction mechanisms (distributed transactions, sagas, and federated
transactions) as special cases of the composite framework and from there, we
have demonstrated how more general mechanisms can be proven correct.

Future work involves dynamic schedulers including recovery within the com-
posite framework and exploring more complex configurations, always with the
trade-off in mind between passing global information and deciding locally.
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6 Appendix

This section contains the proofs to the theorems in the paper.

Theorem 1. A schedule S is conflict consistent iff the union of its weak input
order and its serialisation graph (↪→S ∪ →S) is acyclic. 2

This theorem was proven in [1] where we used slightly modified definitions.
The idea is to construct a total order containing the union of weak order and
serialisation graph, and to find a serial schedule with the same weak output
order.

Theorem 2. A stack schedule is correct if it is SCC.
Proof. We construct by induction a serial execution of all transactions of all
levels, i.e., on all levels all transactions are strongly ordered:
We can formulate the induction in two steps:
(1) Whenever a serial schedule S′i−1 can be constructed which orders conflicting
operations as <Si−1 and serialises the transactions in Ti−1 as they are ordered
in <Si the following holds:
(2) We can construct a serial schedule S′i which orders conflicting operations as
<Si and serialises the transactions in Ti as they are ordered in <Si+1

Point (1) is true since:
o <Si o′ ⇒ o→Si−1o

′ ⇒ ¬(o′↪→Si−1o), as otherwise there would be a cycle in
(↪→Si−1 ∪ →Si−1). Thus, the transactions of Ti−1 are serialised as <Si .
Point (2) is true since:
Si is CC
⇒ (↪→Si ∪ →Si) is acyclic
⇒ (↪→Si ∪ →Si) can be completed to an acyclic total order which defines the
order of the transactions of a serial schedule S′i which orders conflicting opera-
tions as <Si .
As (1) inductively implies (2), what remains is to show the induction hypothesis.
There is a serial schedule S′1 which orders conflicting operations as <S1 since
all its operations are executed sequentially. Therefore, (2) holds without (1) for
i = 1. 2

Theorem 3. An execution in a fork schedule is correct iff it is FCC.
Proof. For every fork schedule FS a semantically equivalent stack schedule SS
consisting of SS1 and SS2 can be constructed with:
SS2 := SF ; TSS1 := OSF , OSS1 :=

⋃n
i=1 OSi , →SS1 :=

⋃n
i=1→Si , 7→SS1 :=⋃n

i=1 7→Si ,
CONSS1 :=

⋃n
i=1 CONSi (i.e., ∀o ∈ t, o′ ∈ t′, t ∈ TSi , t

′ ∈ TSj , i 6= j :
¬CONSS1(o, o

′)),
<SS1 :=

⋃n
i=1 <Si, �SS1 :=

⋃n
i=1 �Si .

Now, SS2 is CC iff SF is, and SS1 is CC iff
⋃n

i=1 (↪→Si ∪ →Si) is acyclic.
Because the fork is FCC then the equivalent stack is SCC. 2

The locally testable criterion for FCC can be proven by dividing (↪→Si ∪ →Si)
into subgraphs of the different schedules and considering their connections to
each other:
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Theorem 4 (Criterion for Fork Conflict Consistency). A fork schedule
FS is fork conflict consistent, iff each of the schedules SF , S1, . . . , Sn is conflict
consistent.
Proof. (Only if). From FCC follows that (↪→Si ∪ →Si) is acyclic ∀i ∈ {1, . . . , n}.
As all those partial graphs (↪→Si ∪ →Si) are pairwise unconnected and therefore
must also be acyclic, each one of the Si schedules is CC.
(If). If each Si is CC, all partial graphs (↪→Si ∪ →Si) (i ∈ {1, . . . , n}) are acyclic.
Since there are no conflicts between operations in different Si, no serialisation
graph edge connects different Si. Hence, all these subgraphs are unconnected and
the union of all of all those graphs remains acyclic and, thus, FS is FCC. 2

Theorem 5. An execution in a join schedule is correct iff it is JCC.
Proof. (If). Let :<:JS be the transitive closure of .JS ∪

⋃n
i=1 (↪→Si ∪ →Si).

Then, for every JCC join schedule JS a semantically equivalent stack schedule
SS consisting of SS1 and SS2 can be constructed with:
SS1 := SJ ; OSS2 := TSJ , TSS2 :=

⋃n
i=1 TSi , 7→SS2 :=

⋃n
i=1 7→Si , �SS2 :=⋃n

i=1 �Si

CONSS2 :=
⋃n

i=1 CONSi ∪ {(o, o′) | o ∈ Ot, o
′ ∈ Ot′ , t ∈ TSi , t

′ ∈ TSj , i 6= j},
→SS2 :=

⋃n
i=1→Si ∪ {(t, t′) | (∃o ∈ Ot, ∃o ∈ Ot′ : CONSS2(o, o′)) ∧ ¬(t′:<:JSt),

such that →SS2 is acyclic}.
Clearly, it is possible to construct an acyclic total order →SS2 as it is not contra-
dicting :<:JS, which is acyclic, and every acyclic partial order can be completed
to an acyclic total order. Note that SS2 has an output order that directly follows
from the definition of the new conflicts and its input order. As ↪→SS2 cannot
contradict →SS2 , (↪→SS2 ∪ →SS2) is also acyclic and from SS1 is CC follows
that SS is SCC.
(Only if). For a join schedule JS a semantically equivalent stack schedule SS
consisting of SS1 and SS2 is constructed with:
SS1 := SJ ; OSS2 := TSJ , TSS2 :=

⋃n
i=1 TSi , 7→SS2 :=

⋃n
i=1 7→Si , →SS2 :=⋃n

i=1→Si ,
CONSS2 :=

⋃n
i=1 CONSi ∪ {(o, o′) | o ∈ Ot, o

′ ∈ Ot′ , t ∈ TSi , t
′ ∈ TSj , i 6= j}.

Be SS SCC and have .JS ∪
⋃n

i=1 (↪→Si ∪ →Si) a cycle.
Case (1): From T.JST ′ follows:
∃t ∈ OT , ∃t′ ∈ OT ′ : t↪→SS1t

′, CONSS2(t, t
′)

⇒ t <SS2 t′, t→SS1t
′, as otherwise SS1 not CC

⇒ T ↪→SS2T
′.

Case (2): From T→SiT
′ follows: T→SS2T

′.
Case (3): From T ↪→SiT

′ follows: T ↪→SS2T
′.

Thus, there is a cycle in (↪→SS2 ∪ →SS2) which contradicts SCC.
Note that in both directions CC of SS1 is equivalent to CC of SJ . 2

Theorem 6 (Criterion for JCC). A completed join schedule CJS is JCC, if
each of the schedules SJ , S1, . . . , Sn is conflict consistent.
Proof. Be G := .JS ∪

⋃n
i=1 (↪→Si ∪ →Si).

If all schedules are CC, all subgraphs G|Si (= restriction of G on nodes of Si)
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are acyclic as .JS-edges exist only between subgraphs. Furthermore, every edge
between subgraphs is a .JS-edge.
Assume now a cycle in G. Then, because of the above reasons, there must be a
cycle between subgraphs, in general:
G|S1 .JS . . . .JS G|Sn .JS G|S1 .
Then there exist transactions in TSJ with:
t′1↪→t2, t′2↪→t3, . . . , t′n−1↪→tn, t′n↪→t1.
From definition 14 and CC follows that there exist weak input orders t′i → ti+1

and also
ti→ti+1, ti→t′i+1, t′i→t′i+1.
I.e., there is a cycle t1 → t2 → . . . → tn → t1, which is a contradiction to CC
of SJ . 2

Theorem 7. An execution in an FDBS-schedule is correct iff it is FDCC.
Proof. (If). Let :<:JS be the transitive closure of .FDS ∪

⋃n
i=1 (↪→Si ∪ →Si).

Then, for every FDCC join schedule FDS a semantically equivalent stack sched-
ule SS consisting of SS1 and SS2 can be constructed, whereby SS1 looks like:
TSS1 :=

⋃n
i=1 TSJi , OSS1 := {o ∈ Ot | t ∈ TSS1}, 7→SS1 :=

⋃n
i=1 7→SJi ,

CONSS1 :=
⋃n

i=1 CONSJi .
Then SS2 can be defined as:
OSS2 :=

⋃n
i=1 TSJi , TSS2 := {t | ∃o ∈ OSS2 : o ∈ Ot}, 7→SS2 := 7→SF ,

CONSS2 := CONSF ∪ {(o, o′) | o ∈ Ot, o
′ ∈ Ot′ , t ∈ TS, t′ ∈ TS′ , S, S′ ∈

{SF , SL1, . . . , SLl}, S 6= S′},
→SS2 := →SF ∪ {(t, t′) | (∃o ∈ Ot, ∃o ∈ Ot′ : CONSS2(o, o′)) ∧ ¬(t′:<:FDSt),
such that →SS2 is acyclic}.
Clearly, it is possible to construct an acyclic total order →SS2 as it is not contra-
dicting :<:FDS, which is acyclic, and every acyclic partial order can be completed
to an acyclic total order. Note that SS2 has an output order that directly follows
from the definition of the new conflicts and its input order. As ↪→SS2 cannot
contradict →SS2 , (↪→SS2 ∪ →SS2) is also acyclic and from SS1 is CC follows
that SS is SCC.
(Only if). For an FDBS-schedule FDS a semantically equivalent stack schedule
SS consisting of SS1 and SS2 is constructed with SS1 looking like:
TSS1 :=

⋃n
i=1 TSJi , OSS1 := {o ∈ Ot | t ∈ TSS1}, 7→SS1 :=

⋃n
i=1 7→SJi ,

CONSS1 :=
⋃n

i=1 CONSJi .
Then SS2 can be defined as:
OSS2 :=

⋃n
i=1 TSJi , TSS2 := {t | ∃o ∈ OSS2 : o ∈ Ot}, 7→SS2 := 7→SF , →SS2 :=

→SF ,
CONSS2 := CONSF ∪ {(o, o′) | o ∈ Ot, o

′ ∈ Ot′ , t ∈ TS, t′ ∈ TS′ , S, S′ ∈
{SF , SL1, . . . , SLl}, S 6= S′}.
Be SS SCC and have .FDS ∪ (↪→SF ∪ →SF ) a cycle.
Case (1): From T.FDST ′ follows:
∃t ∈ OT , ∃t′ ∈ OT ′ : t↪→SS1t

′, CONSS2(t, t′)
⇒ t <SS2 t′, t→SS1t

′, as otherwise SS1 not CC
⇒ T ↪→SS2T

′.
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Case (2): From T→SF T ′ follows: T→SS2T
′.

Case (3): From T ↪→SF T ′ follows: T ↪→SS2T
′.

Thus, there is a cycle in (↪→SS2 ∪ →SS2) which contradicts SCC.
Note that in both directions CC of SS1 is equivalent to CC of SJ1 . . . SJn, as
every SJ1 is CC and there is neither an input order between SJ1 . . . SJn nor an
output order because there are no conflicts. 2

Theorem 8 (Criterion for FDCC). A completed FDBS-schedule CFDS is
FDCC, if
(1) each of the schedules SF , SL1 . . . SLl, SJ1 . . . SJn is conflict consistent and
(2) if @t, t′ ∈ OT , T ∈ TSF : (t, t′ ∈ TSJj (j ∈ {1 . . . n}, ∃tL1 . . . tLk ∈

⋃l
i=1 OSLi :

(t↪→SJj tL1↪→SJj . . . ↪→SJj tLk↪→SJj t
′)).

Proof. Be G := .FDS ∪
⋃n

i=1 (↪→Si ∪ →Si).
If all schedules are CC, all subgraphs G|Si are acyclic as .FDS-edges exist only
between subgraphs. Furthermore, every edge between subgraphs is a .FDS-edge.
Assume now a cycle in G. Then, because of the above reasons, there must be a
cycle between subgraphs, in general (let :<:S := (↪→S ∪ →S)):
TF11 :<:SF . . . :<:SF TF1j1 .FDS TL11 .FDS . . . .FDS TL1k1 .FDS TF21

:<:SF . . . :<:SF TF2j2 .FDS TL21 .FDS . . . .FDS TLmkm .FDS TF11.
We know that all pairs of transactions in this cycle are different from each other,
as otherwise the join schedule at which their subtransactions execute would detect
a contradiction to condition (2) of this criterion.
Then there exist transactions tF11 ∈ TF11, . . . with:
(tF1j1 ↪→SJ1 tL11 ↪→SJ1 . . . ↪→SJ1 tL1k1 ↪→SJ1 tF21), . . . ,
(tFm,jm ↪→SJn tLm1 ↪→SJn . . . ↪→SJn tLmkm ↪→SJn tF11)
There exist (a.o.) the following conflicts in SF :
(tF1j1 , tF21), . . . , (tFm−1,jm−1 , tFm1), (tFmjm , tF11).
Conflicting operations are weakly output ordered, and as they are transactions
in one SJj, resp., also weakly input ordered.
⇒ TF11 :<:SF . . . :<:SF TF1j1 ↪→SF TF21 . . ..
This is a cycle in (↪→SF ∪ →SF ), hence, a contradiction to CC of SF . Thus, G
must be acyclic and CFDS is FDCC. 2
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