
A Time Machine for XML

Ghislain Fourny1, Daniela Florescu2, Donald Kossmann1, Markos Zaharioudakis2

1ETH Zürich
Zürich, Switzerland

ghislain.fourny
donald.kossmann

@inf.ethz.ch

2Oracle
Redwood City, CA

dana.florescu
markos.zaharioudakis

@oracle.com

ABSTRACT
With sinking storage costs, it becomes more and more fea-
sible, and popular, to retain past versions of documents and
data. While undoing changes is worthy, this becomes even
more valuable if the data is queryable. Nowadays, there
are two widespread version control paradigms: document
versioning (SVN, git, etc.) and versioned databases. The
former handles any kind of document, even binary, but only
sees lines of text, so that the query capability is limited.
The latter provide fine-grained temporal query capabilities
on highly structured data - but storing everything in a re-
lational database is not desirable. The goal of this paper
is to provide a unified framework for efficiently versioning,
querying and updating not only data and documents, but
also, inbetween, any kind of semi-structured information,
like XML. We start with the XQuery programming language
and meticulously extend its data model, its syntax and its
processing model to make it seamlessly time-aware. We pro-
vide data structures and algorithms for the efficient imple-
mentation of such a versioning system. Finally, we show
that there is no significant performance loss for traditional
queries when enriching an existing engine with versioning
capabilities.

Categories and Subject Descriptors
D.3 [Software]: Programming languages; H.4 [Information
Systems]: Information Systems Applications

General Terms
Design, Languages, Performance, Standardization

Keywords
PUL, SVN, Transaction time, XML, XQuery, Versioning

1. INTRODUCTION
Over the last few decades, hardware trends have been go-

ing towards cheaper, denser storage. In addition, software

Technical Report, ETH Zurich, January 2011.
.

allows compression, virtually increasing the amount of data
stored. Several times, Jim Gray [23] [30] pointed out that
with so much storage capacity available, it becomes possible
to keep track of crucial information: instead of updating in
place, a new version can be created.

Versioning information allows to go back in time, com-
pare, analyze, and produce even more information. In ad-
dition, versioning can serve as a transaction control mech-
anism, allowing applications to undo or merge concurrent
changes. Such features could be very useful, for example, for
collaboration tools, which are proliferating. Google, Adobe
and Microsoft are offering Web applications for word pro-
cessing, spreadsheets, presentations, which allow users to
view, share and edit documents in real time [1] [4] [6]. Ap-
plications like Microsoft Word already have basic versioning
(reviewing) capabilities.

Some versioning systems are already widespread. On the
one hand, there exist document versioning systems such
as SVN [2], git [3] which analyze documents line by line,
compare and compress them. On the other hand, there
are also versioning systems for structured data, like ver-
sioned databases (Oracle Flashback [7], Microsoft Immor-
talDB [24]).

There are two basic approaches to keeping track of ver-
sioned data. The first one is to use valid time [10][22][26][29],
i.e., the time at which the data is valid (which can even be
far away in the past, before computers existed at all). The
second one, which we are taking in this paper, is transaction
time, i.e., the time at which the data is written or commit-
ted.

The general contributions of our work are:
(i) to provide a unified model for data versioning, doc-

ument versioning and anything (semi-structured data) be-
tween data and documents.

(ii) to have a programming language suited for processing
(powerful querying as well as updating) this versioned data.

(iii) to perform measurements on a prototype that demon-
strate that time travel can be implemented with reasonable
storage and query time overhead.

We choose to base our work on XML technologies and ex-
tend XQuery [12], which is a Turing-complete programming
language standardized by the W3C.

What distinguishes our approach from existing literature
is the combination of two factors. First, time is often mod-
eled as an explicit parameter in an application or document.
Extra code is needed to explicitly refer to time in the queries,
which can lead to poor performance. Rather, we choose to
add time to the logical data model [20] and hide physical

implementation and storage details from the programmer,
so that it is simple to go back in time and query any, or
even several versions. Also, we ensure backward compati-
bility, allowing the user to completely ignore the versioning
features. Second, our data and query model seamlessly inte-
grates with the updating model: instead of collecting snap-
shots over time, the database is constructed and updated
using the XQuery Update Facility [14], which has the nice
side effect of providing us with the deltas as Pending Update
Lists and of unambiguously keeping track of node identities.

The remainder of this paper is organized as follows: in
Section 2, we present a motivating example. Section 3 in-
troduces our extension of the XQuery data model to ob-
tain an XML-aware versioning system. Section 4 introduces
our extension of the XQuery programming language with
new functions and time axes, so that it is possible to query
against versioned data. In Section 5, we give an overview
of the processing model for checking out from and checking
in to the repository, to allow collaborative work. Section
6 presents data structures to implement the versioning sys-
tem together with an high-level overview of querying and
updating algorithms, as well as a storage scheme based on
existing literature. Section 7 presents the performance mea-
surements showing that extending a non-versioning engine
with versioning capabilities does not alter performance on
traditional queries. Section 8 discusses related work.

2. MOTIVATING EXAMPLE
The running example for this paper is the following: an

investment bank maintains data about stocks, bonds, funds,
and portfolios thereof in a database. Users can collabora-
tively modify the data. This is semi-structured informa-
tion (for example, it has optional comments and nested ele-
ments). The bank would like to set up a versioning system
for its data.

Initially, the data could look as shown in Fig. 1(a). There
are three sections: users, securities and portfolios. The users
are Alice, Bob, and Charles. The securities part contains
Apple stock (Nasdaq Symbol AAPL), a bond of the Swiss
Confederation (Valor 3141) and a fund managed by Charles
(ISIN CH123456789) investing in the former two assets. Bob
has a portfolio containing bonds and shares in Charles’ fund.
Fig. 1(b) shows a subsequent database state after some mod-
ifications: Alice changed her hometown, the fund’s content
was updated, Bob updated his data to use references (Sym-
bol, Valor, ISIN) to the underlying securities, and Alice cre-
ated her portfolio with AT&T stocks.

While keeping all the functionality already available to
query and update the current version, the bank would like
to be able to keep track of and analyze past data as well.
For example, it could be interested in the evolution of the
diversification of a portfolio, or in checking that a balanced
fund has always allocated the right stock/bond ratio over
time, or in comparing the performance of a portfolio be-
tween two versions (using an external source to retrieve the
latest pricings). Versioning functionality is needed. We em-
phasize that not only versioning data is important - reasons
are widespread in literature [29], [31] - but also the ability
to flexibly query against past versions.

Versioning it as a document, e.g., in SVN (diffing lines of
text) would miss the continuity of the tree structure: the
identity of the nodes is lost between the versions, drastically
limiting the querying functionality. A versioned database

Users Securities
Alice, New York

Bob, Cautious Investor

Charles, Bank AG

Stock, Apple
AAPL

3141 Bond, Swiss Conf

CH123456789
Fund Balanced

managed by Charles
100 x AAPL
200 x 3141

Portfolios

Bob’s Portfolio
10 x Swiss Bond
3 x Charles’ Fund

Users Securities Portfolios

Virtual Portfolio (Alice)
5 x Stock, AT&T

Alice, Palo Alto

Bob, Cautious Investor

Charles, Bank AG

Stock, Apple
AAPL

3141 Bond, Swiss Conf

CH123456789
Fund Balanced

managed by Charles
50 x AAPL
200 x 3141

Bob’s Portfolio
10 x 3141

3 x CH123456789

(a)

(b)

Figure 1: Two versions of the data (a) and (b).

would not be of great help either, as this is semi-structured
information. For example, the users do not provide the same
information (hometown, company, or even comments). The
keys used to identify securities are not using the same stan-
dard (Nasdaq Symbol, Swiss Valor, ISIN). Then, there are
levels of nesting (like the AT&T stocks nested in Alice’s
portfolio). Finally, since there is no schema, the evolution
of the data structure is unpredictable. For all these rea-
sons, versioning semi-structured data cannot be reduced to
a versioned database with uniform rows and colums in a
straightforward way.

There are already many technologies around for storing
and manipulating semi-structured information: this data
can be stored as XML (e.g., a large XML document, or
as three collections of XML trees) or JSON. XML can be
queried with XPath, XQuery, XSLT. These three languages
are all based on the same data model (XDM) [20]. The
XQuery language itself is made of three main parts:
• A side effect-free core (W3C recommendation) [12], which
reads XML documents and outputs an XDM instance.
• The XQuery Update Facility (W3C candidate recommen-
dation) [14] which reads XML documents and outputs a list
of changes, standardized as a Pending Update List (PUL),
that can subsequently be applied to these XML documents.
• The XQuery Scripting Extension (W3C working draft) [13]
which reads from and writes to XML documents, applying
any number of PULs.

There is also literature about storing versioned, semi-struc-
tured information [16] [17] or query it [26] [19]. We suggest
to leverage these technologies and techniques and provide a
unified framework which is (1) XML-aware to handle any
kind of data. The versioning system should be aware of
XML trees and nodes, which can be done by extending the
XDM. (2) XQuery-aware for powerful queries and updates.
It should be possible to easily navigate to past versions with
XQuery code, which can be done by extending the XQuery
syntax. It should be possible as well to create new versions
with XQuery Update (which outputs a PUL) or XQuery
Scripting (which produces a sequence of PULs). We showed
in [21] that a sequence of PULs can be composed to a single
PUL, so that a delta can always be represented by a PUL.
Serializing these PULs as XML can even allow querying the
deltas.

A typical setting to start with for the implementation
would be to use an XQuery Web Application Server like

MarkLogic [5] or Sausalito [8]. The latter runs on and stores
its XML data in the Amazon cloud. We chose to extend
Sausalito with versioning capabilities.

3. EXTENSIONS TO THE DATA MODEL
Our broader aim is bridging the gap between data and

document versioning. Because we want to query versioned
semi-structured data, we need to work at the level of the
data model. For XML- and XQuery-aware versioning, we
need to extend the XQuery Data Model (XDM) [20] with a
time dimension.

3.1 Tree timelines
We introduce the concepts of node timeline, tree timeline

and version. In the context of a Web application, we are
interested in linear versioning. Branching can be emulated
by setting up a tree of repositories, and merging can be done
with the processing model defined in Section 5.

A node timeline is a succession of all node items sharing
a given identity. It models the lifetime of a node item on
which updates are applied. A node timeline is identified by
a URI.

1

2

3

l

(a) (b) (c)

Figure 2: A tree timeline (a), a node timeline (b), a
sequence of versions (c).

A tree timeline is a succession of trees whose roots share
a given identity. It models the lifetime of an XML tree on
which updates are applied. All roots of these trees belong
to the same node timeline, which is called the root node
timeline of the tree timeline. A tree timeline is identified by
the URI of its root node timeline.

A version uniquely identifies a tree among a tree timeline.
Each version has a number. There is also a special version
with no number, called the local version. This is the version
which is currently being modified by the user and which has
not been committed yet. Each user can have her own local
version. A version is identified by a URI.

Fig. 2 shows how tree timelines, node timelines and ver-
sions are related. The version shown at the bottom in red
is the local version.

Node items are defined as in the original XQuery Data
Model. Two new accessors are defined on them:
• dm:node-timeline returns the URI of the node timeline
this node item belongs to
• dm:version returns the URI of the version that uniquely
identifies this node item within its node timeline.

v
(c)

(a)

(b)

Figure 3: A node timeline URI (a) together with a
version URI (b) uniquely identify a node item (c).

The node timeline URI and the version URI uniquely iden-
tify a node item (Fig. 3). The other accessors (dm:children,
dm:attributes, dm:node-name, ...) are defined as stated in
the XDM specification. Document order is extended to al-
low time-awareness: node items are first sorted in time, and
then in space. Newly created nodes (with element construc-
tors or nodes copied in updating expressions) belong to no
timeline and are in no version, so that these accessors are
reserved.

In the remainder of this paper, when we talk about “a ver-
sion of a node (or tree) timeline”, we actually take a shortcut
and refer to the node item (tree) uniquely identified by this
version and the node (tree) timeline. This should be clear
from the context.

3.2 Collection timelines
In some XQuery implementations like Sausalito, collec-

tions are first-class citizens (for example, they can be up-
dated with extra update primitives). Thus we also extend
the corresponding data model.

A collection timeline is a succession of collections of node
items. It models the lifetime of a collection to which nodes
are inserted or deleted. Collections are defined in the XQuery
specification. Versions can also uniquely identify a collection
in a collection timeline (Fig. 4).

1

2

3

l

(b)(a)

Figure 4: A collection timeline (a), and the corre-
sponding versions (b).

We restrict collection timelines to two different kinds: (i)
collection timelines which only contain non-local (frozen)

versions of the node timelines, and (ii) collections timelines
which only contain local versions of the node timelines. Col-
lections of the second kind “follow” the evolution of the node
timeline.

The implementation of collections differs between XQuery
engines. In Sausalito, collections and trees are tied together:
collections own their trees on the storage layer, i.e., a col-
lection points to the roots of its trees, and a tree can only
belong to a single collection [11]. To allow for this entangle-
ment, we can synchronize tree and collection (type (i)) ver-
sion numbers, which means that the versioning granularity
is at the collection level (“synchronized collection timeline”).

The framework for synchronized collection timelines can
very often be deduced from the framework for tree timelines
as such a collection can be represented as a forest of trees
(equivalently, a tree without its root). The framework for
other collection timelines (type (ii), or unsynchronized (i))
is very similar to document-oriented versioning as each slice
is a sequence of identifiers.

3.3 Serialized Pending Update Lists
The XQuery Update standard [14] defines how to update

an XML document. The updates themselves are organized
as a set of update primitives (of the kinds insert, delete,
replace, rename) standardized as a Pending Update List
(PUL). For example, it is possible to delete Bob’s portfo-
lio like so:
delete node //Portfolio[@owner="Bob"]

This XQuery Update program outputs a PUL containing,
in this case, one update primitive upd:delete($ref) with
a reference $ref to the node to delete (the one computed
by the XPath expression above). Such a PUL can then be
applied to the XML document, which deletes the node.

An updating XQuery program always returns a PUL. XQuery
Scripting is an extension of XQuery Update which allows to
sequentially apply several PULs - however, as explained in
Section 2, this can always be reduced to a single PUL. PULs
are hence ideal candidates for deltas in an XQuery-based
versioning system, as shown on Fig. 5.

delete
insert into

replace with

(a)
(b)

(c)

Figure 5: Three versions (one being local) of a
tree timeline (a), and serialized PULs modeling the
deltas (b).

In order for these deltas to be queryable, we choose to
serialize the PULs to XML. For example, the PUL output
by the program above can be serialized as:
<pending-update-list xmlns="http://www.example.com/spul">

<delete>

<target>http://www.example.com/Doc1#1.3.3</target>

</delete>

</pending-update-list>

Technically, a serialized Pending Update List is a Pending
Update List (as defined in [14]) in which the target is re-
placed with the URI of its node timeline and the content is
an XDM serialization. It is beyond the scope of this paper
to specify an XDM serialization model. Serialized Pend-
ing Update Lists, since they are XML, are queryable with
XQuery.

4. EXTENSIONS TO THE PROGRAMMING
MODEL

4.1 Tree timelines
To navigate through a tree, i.e., within a version of a tree

timeline, the user can use the various axes defined in XQuery
(child::, descendant-or-self::, ...). To navigate in
time, the following functions are added to the XQuery func-
tions and operators [25] and are available to the user (they
are defined in a new versioning namespace, represented with
the vng prefix):
• vng:reference which takes a node and returns its node
timeline URI (using dm:node-timeline).
• vng:version which takes a node and returns its version
URI (using dm:version).
• vng:dereference which takes a node timeline URI and
returns its local version.
• vng:ttdereference which takes a node timeline URI,
a version URI and returns the associated node item.
• vng:node-versions which takes a node and returns a
list of all version URIs of its node timeline.
• vng:version-number which takes a node and returns
its version number.
• vng:time which takes a node and returns the creation
date and time of its tree (when it was committed).
• vng:is-local which takes a node and returns true() if
it is local, false() otherwise.

For example:
vng:dereference(vng:reference($node))
gets the local version of node $node.
let $ref := vng:reference($node)
for $version in vng:node-versions($node)
return vng:ttdereference($ref, $version)
builds a sequence of all versions of node $node.
for $n in $nodes
where vng:is-local($n)
return $n
filters nodes which are local within a sequence $nodes.

Because using these functions remains tedious for fast time
travel, we also introduce the following axes:
first:: (the first version)
earlier:: (the former version)
past:: (all past versions)
past-or-current:: (the same, plus the current one)
last:: (the last version)
later:: (the next version)
future:: (all future versions)
future-or-current:: (the same, plus the current one)
current:: (the current version)
all-times:: (all versions)
local:: (the local version)

For example, later::node() navigates to the next ver-
sion of the node timeline to which the current node belongs

or the empty sequence if it does not exist. For example,
last::node()/later::node()
will always return the empty sequence, as well as
first::node()/earlier::node().

Time axes are compatible with node tests:
<time axis>::<node test>
is defined as
<time axis>::node()/self::<node test>.

For example
future::mickey
is defined as
future::node()/self::mickey
and looks for all newer versions of the current node whose
names are “mickey”.

Also,
if(vng:reference($temperature-left)

= vng:reference($temperature-right))

then

fn:avg(

$temperature-left/future-or-current::*
intersect

$temperature-right/past-or-current::*
)

else ()

checks whether the temperature nodes $temperature-left
and $temperature-right belong to the same node time-
line and if such is the case, it computes the average temper-
ature between them.

Back to our motivating example in Section 2, the following
query checks that balanced funds correctly invested their
funds (according to is-compliant):
every $fund in $doc//all-times::Fund

satisfies ($fund/Type != "balanced"

or is-compliant($fund))

The following query looks for all versions of Bob’s portfolio
which, today, would be worth more than the last version
(value gives access to the latest quotes):
let $current-portfolio

::= $doc//Portfolio[owner = "Bob"]

for $portfolio in $current-portfolio/past::*
where value($portfolio)

> value($current-portfolio)

return vng:version($portfolio)

4.2 Collection timelines
To navigate through time in collection timelines, the fol-

lowing functions are available to the user:
• fn:collection which takes a collection timeline URI
and returns a sequence of nodes (its local version)
• vng:collection-versions which takes a collection
timeline URI and returns a list of all its version URIs
• vng:ttcollection which takes a collection timeline
URI and a version URI and returns the corresponding col-
lection (sequence of nodes).

4.3 Retrieving deltas
We define the function vng:pul which takes a tree or

collection timeline URI and two version URIs, and returns
the corresponding delta (serialized PUL). This query counts

how many security-related nodes have been deleted so far:
let $ref := $doc/vng:reference(Securities)

let $first := $doc/vng:version(first::Securities)

let $last := $doc/vng:version(last::Securities)

let $pul := vng:pul($ref, $first, $last)

return count($pul//*:delete/*:target)

5. EXTENSIONS TO THE PROCESSING
MODEL

One of the requirements for our framework is flexibility,
which should also be true for collaborative work. We need
flexibility to embed different collaboration models, for exam-
ple: (a) database transactions, where queries are executed
in an isolated way. An error is thrown if there are any con-
current changes. (b) document editing, where it is always
attempted to merge changes into the repository even if other
users modified the document.

In order to allow for several users to edit a document or
data with different collaboration models, we need to extend
the processing model of XQuery.

5.1 Checkout and checkin
We rely on a classical server-clients architecture. The

server maintains a central repository with all past versions.
Each client can set up a local version of a tree timeline by
checking out the tree timeline from the server repository. It
is only allowed to manipulate this local version (storing non-
committed yet modifications as a local PUL). The nodes in
the local version are only visible to the client.

The local modifications can be committed by checking
in. New versions are appended to the repository only upon
a successful checkin. Checkins and checkouts are atomic
and isolated operations: there can only be one checkout or
checkin at a time. This architecture is illustrated on Fig. 6.

1

2

3

Ch
ec

ko
ut

 a
nd

 C
he

ck
in

 P
ol

ic
yClient 1

Local PUL

Client 2

Local PUL

Server

Figure 6: The checkout-checkin processing model

To make checkouts and checkins as flexible and config-
urable as possible, we use checkout and checkin policies. A
client chooses a policy to decide how it wants to commu-
nicate with the server (read/write access to the repository,
concurrent changes allowed or not, ...).

Both checkouts and checkins can be done implicitly, or
explicitly with a function call. An implicit checkout occurs
whenever it is attempted to access the local version of a
tree timeline that has not been checked out yet. An implicit
checkin occurs at the end of the program for all tree timelines
which were checked out and modified during the program.

5.2 Checkout policy
A checkout policy can be seen as a blackbox which checks

out a version of a tree timeline so that the user can modify

it. As one could have already checked out and made modi-
fications before, the framework must allow for merging this
version of the tree timeline with an existing local version.

Its input parameters are (i) the URI of the tree timeline
to check out, (ii) the URI of the version to check out and
(iii) the PUL containing local changes (empty if it is the first
checkout or if there are no local changes).

It outputs (i) the local version of the tree timeline which
has just been checked out, (ii) the updated PUL containing
local changes, (iii) a boolean indicating whether it has been
successful. If this boolean is false, then the local version
and the local PUL are reverted and (iv) possibly an XDM
instance containing unsolved conflicts if the checkout failed.

In addition, it saves the URI of the version which has
been checked out in the dynamic context so that the checkin
policy knows on what version the local PUL is based.

5.3 Checkin policy
A checkin policy can be seen as a blackbox which attempts

to check in the modifications done on the local version.
Its input parameters are (i) the URI of the tree timeline

to check in and (ii) the PUL containing local changes. In
addition, it reads the URI of the version which has been
checked out from the dynamic context.

It outputs (i) the PUL which is to be applied to the last
version in the repository, (ii) a boolean indicating whether
it has been successful. If this boolean is true, then the local
version and the local PUL are erased and the version URI is
removed from the dynamic context. (iii) possibly an XDM
instance containing unsolved conflicts if the checkin failed.

If the checkin succeeds, the output PUL is applied to the
last version of the tree timeline to create a new version.

5.4 Using Checkout and Checkin policies
The reason why our framework allows checkout and checkin

policies is to allow each user to choose her collaboration
model. The user is provided with several checkout and
checkin policies.

There are several possibilities for a checkout policy. Here
are four examples of checkout policies:
• no-checkout: always throw an error (no checkouts possible)
• single-checkout: copy the version of the tree timeline to
the local version when it is implicit, and subsequently return
errors (only one checkout possible)
• merge: always copy the version of the tree timeline to the
local version and then merge any former local changes.
• discard: always copy the version of the tree timeline to the
local version and then discard local changes.

Also, there are several possibilities for a checkin policy,
like for example:
• no-checkin: always throw an error (no write access to the
repository)
• conservative: check whether the version which has been
checked out is (still) the last version in the repository and
output the local PUL if such is the case. Otherwise throw
an error.
• merge: in any case attempt to merge local changes to
changes between the version which has been checked out
and the last version in the repository. Throw an error if
conflicts arise so that the user solves them.
• discard: discard any changes done in the repository since
the last check out and output a merge of a reverse PUL and
of the local PUL.

Choosing which policy to use is done at the application
level, rather than at the repository level, i.e., different users
of the same repository may use different policies. Each pol-
icy has a URI and choosing a policy is done in the prolog,
exactly like collations for string comparison.

For example, for a database transaction mode, one could
use:
declare checkout policy

"http://www.example.com/single-checkout";
declare checkin policy

"http://www.example.com/conservative";
where only one checkout is made, and an error is thrown
whenever other users concurrently wrote to the repository.

And for document editing:
declare checkout policy

"http://www.example.com/merge";
declare checkin policy

"http://www.example.com/merge";
where it is always attempted to merge any changes.

6. ALGORITHMS AND DATA STRUCTURES
The last three parts gave a logical view on the expected

behavior of tree timelines for an XQuery program. The con-
tribution of this part is threefold:
• introduce a new data structure, called π-tree, which effi-
ciently implements tree timelines
• give algorithms (i) defining how versions of this tree time-
line can be retrieved and (ii) defining how this data structure
is modified when a new version is produced.
• reusing and completing an existing storage schema to allow
for collection versioning.

6.1 Pi-Nodes, Pi-Trees and Pi-Forests
Keeping each version as whole tree in memory would be

very expensive. Many document versioning systems (SCCS,
RCS, CVS, SVN...) store reverse or forward deltas to recon-
struct past versions. The thought process explaining why we
are not doing this is as follows. Each XML data slice can be
represented as a tree. With the XQuery Update model [14],
over time, the parent of a node never changes. A node can
be connected, or disconnected, only once: at no two points
in time it has two distinct parents (XQuery Update does not
support moving nodes around). For example, on Fig. 7(a),
in any version, node β is always a child of node α, γ and δ
of β, ε of α and φ of ε.

1

2

3

α

α

α

β

β

γ

γδ

ε
φ

β
1,3

ε
3,∞δ

2,3
γ
1,3

φ
3,∞

1,∞
α

(a) (b)

Figure 7: Three versions of a tree timeline (a) and
its implementation as a π-tree (b)

Hence, for each tree timeline, its node timelines are orga-
nized in a tree in a natural way as shown on Fig. 7(b). It
is this materialization of the tree timeline as a tree of node

timelines, called π-tree, which we use for our implementa-
tion. From now on, we focus on element nodes, but it is
straightforward to extend to other kinds of nodes.

A node timeline is implemented as a π-node (Fig. 8(a)),
which has an identity λ (here ORDPATH 1.3), a creation
time c (here 2) and a deletion time d (here 5), a mapping
n of the versions to the successive names of the node (“a”
for 2 and 3 and “b” for 4). Creation and deletion times are
positive integers, possibly infinite. A π-tree is then a tree
of π-nodes. We call a (possibly empty) sequence of π-trees
(Fig. 8(b)) a π-forest. Note that π-forests can be used to
implement synchronized collection timelines (Section 3.2).

For convenience, the algorithms are described recursively
on π-trees and π-forests, with the following definition: a π-
tree (Fig. 8(c)) is obtained by attaching a π-forest below a
π-node.

2,5
1.3 2-3 a

b4

(a)

(b) (c)

Figure 8: A π-node (a), a π-forest (b), a π-tree (c).

Retrieving a version (slice) v from the π-forest data struc-
ture is done with the instantiation function. This function is
defined recursively as follows: the instantiation of a π-node
(λ, c, d, n) is the node (λ, n(v)) if c ≤ v < d, is an empty for-
est otherwise. The instantiation of a π-forest is the sequence
of the instantiations of its π-trees, and the instantiation of
a π-tree is done by instantiating its root π-node and, if the
result is not empty, recursively the underlying π-forest.

Using this algorithm, the three versions on Fig. 7(a) can
be reconstructed from Fig. 7(b). The algorithm works in
O(n) where n is the size of the π-forest. This grows linearly
with the number of versions, but it is possible to reduce this
time to the average size of a slice (up to a constant factor)
by using clustering, as shown in Section 6.4.

6.2 Updating a Pi-Forest
From a logical point of view, it is straight-forward to com-

pute a new version for a tree timeline: the last version is
copied, the serialized PUL is deserialized to a PUL with
targets living in this copy, and the PUL is applied. The
resulting tree is the new version. From a physical point of
view, the π-forest needs to be updated. We defined an algo-
rithm to apply updates (contained in a PUL) to our π-forest
data structure at time t (assuming all creation and deletion
times in the π-forest are lower than t). This algorithm is
such that, at the logical level:
• it does not modify previous versions (u < t)
• it creates a new version t which differs from version t− 1
exactly according to the PUL.

An illustration is given in Fig. 9, where the new π-tree
instantiates to an additional version obtained by applying
the PUL to the former version.

The algorithm is defined as follows. Applying a PUL is

1,∞ 2,∞

2,∞ 1,2

1,∞

(a)

1,∞ 2,∞

2,3 1,2

1,∞3,∞

(b)

(c)
1

2

3

insert as �rst into
delete

Figure 9: The older π-tree (a) can be instantiated
to the first two versions in (c). The updated π-tree
(b) can be instantiated to the three versions.

done:
• for each deleting update primitive: by updating the dele-
tion time of the target,
• for each renaming update primitive: by updating the time-
to-name mapping,
• for each inserting update primitive: by inserting all con-
tents at the corresponding locations (initializing the creation
time to t and the deletion time to +∞)
• for each replacing (content-replacing) update primitive: by
inserting the content after (or as last child of) the target and
updating the deletion time of the target (or of its children).

The complexity of the algorithm is O(sd) where s is the
size of the PUL and d the maximum depth of a tree, assum-
ing a node can be reached in O(d) with a reference.

6.3 PUL retrieval
PUL retrieval may be implemented in two ways: (1) The

PULs are stored besides each π-tree, and PUL composition
is used to compute deltas. (2) No PUL is stored and deltas
are computed automatically from the π-tree, as shown in
existing literature, e.g. [15]. (1) and (2) might give different
results, so the choice must be documented to the user.

6.4 Tree and Collection Timeline Clustering
Over time, as the data structure gets updated, its size

grows. Retrieving a given version will hence take increas-
ingly long times, as the entire data structure needs to be
loaded.

This problem was solved by Chien, Tsotras and Zaniolo
in [16] with a technique called Usefulness-Based Copy Con-
trol (UBCC). With this technique, timestamped XML ele-
ments (in our case, these would be π-nodes) are organized in
constant-size pages. Each of them is identified with Sparse
Preorder and Range (SPaR) [17] (in our case, we can use
ORDPATH embedded in our URIs). Hence, using a snap-
shot index [28] to get all relevant pages, it is possible to
reconstruct any version.

UBCC’s main idea is that if the usefulness (i.e., the per-
centage of space which is relevant for the current version) of
a page sinks below a treshold, the items of this page which
are relevant for the current version are copied to a new page
and the page is invalidated for the current version. Using
this scheme allows version reconstruction in a time which is
linear in the size of the target version.

If versioning is done at the collection level (see Section
3.2), we need to support synchronized collection timeline
storage (as opposed to tree timeline storage originally). A
synchronized collection timeline can be regarded as a ”bigger
tree” (with a virtual root), so that the same storage and
reconstruction model as in UBCC can apply.

In the illustration on Fig. 10, we use ORDPATH identi-
fiers [27], used only once within a collection. To generalize
ORDPATH to a collection, we also use the ordering mecha-
nism (1, 2.1, 3, ...) for the root of each tree. These identifiers
allow to unambiguously reconstruct each π-tree, as well as
the entire collection π-forest.

4,∞
2.1.0.1

3,∞
2.1.1

3,∞
2.1

2,∞
1.3

1,2
1.1

1,∞
1

2,4
3.1.1

2,4
3.1

2,∞
3

1 1,∞ 3 2,∞

2.1 3,∞

1

2

page

page

(a)
(b) (c)

Figure 10: Two sample UBCC pages containing
three π-trees, like (a). A π-tree has a root ORD-
PATH (b) and an overall timestamp (c).

However we suggest to introduce a ”single-page” mode for
large collections with small tree timelines, which reduces the
number of pages used when retrieving small parts of such
collections:
• The node timelines of a tree timeline which is smaller than
a page are stored on the same page, in one piece, while col-
lection timelines can be spread over several pages. New node
timelines are inserted in place instead of being appended to
the current page, which maintains the single-page consis-
tency.
• The copy operation in UBCC (i.e., copying nodes that are
still alive to a new page) is performed not only upon lack
of usefulness, but also when a page becomes full because of
in-place updates. Technically, this splits the corresponding
tree timelines into an older, no longer updated, and a newer,
fresh representation (see Fig. 11).
• For efficiency, each tree timeline stored on a single page
can be assigned a timestamp interval (the smallest intervall
containing all intervals of its node timelines). That way, the
snapshot index technique can be applied in a coarser way,
with fewer intervals.
• If the current version of a tree timeline can no longer fit
on a single page, we revert to the original UBCC model by
relaxing the single-page constraint.

7. PERFORMANCE MEASUREMENTS
We performed measurements to check that adding ver-

sioning features to our engine did not lead to a significant
loss of performance for traditional queries. We built a pro-
totype based on Sausalito [8], implementing the π-tree data
structure and the instantiation and update algorithms, not
using clustering. Our measurements compare the existing,
non-versioning Sausalito with the versioning-enabled proto-
type.

4,∞
2.1.0.1

3,∞
2.1.1

3,∞
2.1

2,∞
1.3

1,2
1.1

1,∞
1

2,4
3.1.1

2,4
3.1

2,∞
3

2,∞
1.3

1,∞
1

2,∞
3

5,∞
1.2.1

1 1,5 3 2,5

2.1 3,∞

1 5,∞ 3 5,∞

1

2

3

page

page

page

Figure 11: Page 1 is full. To insert the green π-node
1.2.1, the current (not red) π-nodes 1, 1.3 and 3 need
to be copied to a new page.

7.1 Query classification
For convenience, we group queries into three kinds:
• Traditional queries do not use versioning facilities (time
axes, versioning functions), are automatically reading the
local, checked out version and potentially creating a new
version. They can be classical (XQuery core), updating or
scripting queries.
• Time travel queries correspond to classical queries that are
executed on a given past version.
• Spacetime queries are the most general queries and can
travel back to any version. They can be classical, updating
or scripting (in the latter case they may perform explicit
checkins or checkouts).

7.2 Measurement settings
We chose to base our repository on XMark. XMark is a

benchmark suite providing automated generation of auction
documents of any size, as well as a DTD against which these
documents are valid and 20 sample queries.

We adapted this benchmark as follows: we designed up-
dating queries which read an XMark document and simulate
a construction scenario thereof in 25 steps. This means that
we obtain a repository of up to 25 versions against which we
can perform our measurements. We can reuse the original
20 XMark reading queries either as they are, as traditional
queries or adapt them as time travel queries.

The first part of the measurements is done in the genera-
tion phase. We generated our 25 versions on the traditional
engine and obtained the times g(vers, v)v=1..25. We also
measured the size of each intermediate version s(v)v=1..25.
Then we generated our 25 versions in the versioning engine
and obtained the times g(vers, v)v=1..25. We measured the
intermediate sizes of the entire repository r(v)v=1..25.

The second part is done in the query execution phase.
We built a three-dimensional pivot table t(n, v, q) where n
is the total number of versions in the repository (n = 0 for
the traditional engine), v is the version queried (v = 0 if we
query the local version on the versioning engine), and q the
XMark query being executed (between 1 and 20, or 0 for a
trivial display of the version) is the query being executed.

0

1.5

3.0

4.5

6.0

0.00258 0.896 1.89 2.81 3.73 4.55 6.91

Repository Size (MB) Version Number Repository Size (MB)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Re
po

si
to

ry
 S

iz
e

(M
B)

U
pd

at
e

Ti
m

e
(s

)

Query Time Comparison Repository Size Comparison Update Time Comparison

Versioning
No Versioning

0

20

40

60

80

0 1.26 2.35 3.6 4.55
0

1.75

3.50

5.25

7.00

1 5 9 13 17 21 25
0

2.5

5.0

7.5

10.0

0 1.26 2.35 3.6 4.55

Versioning Repository Size (MB)

Ex
ec

ut
io

n
Ti

m
e

(s
)

(a) (b) (c) (d) Time Travel Comparison
(in memory)

Figure 12: The three goals: query time (a), repository size (b), update time (c) in the same complexity class
with versioning as without versioning. (d) shows the time travel performance.

t(n, v, q) is the corresponding execution time.

7.3 Design goals
Before implementing a prototype, we formulated three de-

sign goals aiming at almost no loss of performance for tradi-
tional queries (with “about the same”, we mean in the same
complexity class, with a constant factor as small as possi-
ble):
1. Traditional queries should be executed on a versioning
engine in about the same time as on a traditional engine:∑

q t(n, n, q) ∼
∑

q t(0, n, q) for n = 1..25
2. The physical repository size of a versioning engine should
be about the same than that of a traditional engine: r(n) ∼
s(n) for n = 1..25
3. Traditional updating queries should be executed in about
the same time as with a traditional engine: g(vers, n) ∼
g(trad, n) for n = 2..25

7.4 Results
We are showing measurements obtained with an XMark

document size of 1MB (scale factor 0.01) on Fig. 12. The
three goals are achieved, as the complexity classes are equiv-
alent (the constant factor rises by 20 to 30 %). Fig. 12(d)
also shows how the performance in memory of time travel
to each version (with a 25-version repository) compares with
accessing the corresponding documents directly on non-ver-
sioning Sausalito. Since we did the measurements without
clustering (i.e., one single cluster), the loading time is con-
stant and irrelevant. Clustering would only become mean-
ingful with more versions, where existing literature shows
that performance scales [16])

8. RELATED WORK
Example of versioned database technologies are Oracle

Flashback [7] and Microsoft Immortal DB [24], which al-
low non-destructive querying of the past versions of the
database.

Zholudev and Kohlbase developed TNTBase [31] which is
a versioning system for versioning XML documents on top of
an SVN respository, linked to an XML database. TNTBase
seems to focus on document-oriented versioning, e.g., deltas
are regular SVN deltas, whereas we attempt to bridge the
gap between documents and data.

There are non-XML proposals for versioning semi-structured
data. Combi et al. [18] introduce a data model and an SQL-
like query language.

There are also other proposals for extending XML data
models. Many approaches work with valid time intervals and
introduce it explicitly in XML documents, so that queries
have to be aware of the syntax chosen (i.e., do filtering with
valid-time attributes). For example, Amagasa et al. [10] as
well as Mendelzon et al. [26] extend the XPath data model
with valid-time intervals. Dengfeng and Snodgrass [22] ex-
tend the XQuery language, also with valid-time intervals,
and XQuery queries either need to be aware of the imple-
mentation (representational queries) or need to be trans-
formed to a corresponding representational query. Fusheng
and Zaniolo [29] suggest an XML versioning system which
does not tamper with the data model, but here also, an
explicit valid-time parameter is introduced in XML docu-
ments. Furthermore, the latter approach requires that the
document is valid against a DTD: the DTD for the corre-
sponding time-aware XML document is algorithmically de-
duced from the DTD of the original document. In our ver-
sioning system, XML data needs not be valid, as we are
willing to leverage the fact that semi-structured data can
exist without a schema.

Dyreson [19], like us, focuses on transaction time and ex-
tends XPath with time axes. However, his approach is based
on the concept of an observant system, which has access to
documents as well as reading and modifying times, but can-
not update them. Our approach, on the other hand, follows
very closely the evolution of XML data from the inside be-
cause it is seamlessly integrated with the XQuery update
facility, which is the language to update XML data. Fur-
thermore, our deltas are serialized XQuery Update’s Pend-
ing Update Lists. Dyreson also suggests time axes, but the
approaches are different: he defines the concept of known or
assumed status (since the observer is outside), uses trans-
action time literals and introduces new node tests. We use
the concept of version number and chose a more concise ap-
proach (all of the time travel information is in the axes).

Shu-Yao, Tsotras, Zaniolo and Donghui [16], [17], [28] pro-
vide an XML Document versioning storage scheme. They
store the document as a set of nodes, clustered on several
pages. Usefulness-based copying is used for efficiency, and
each version of the document can be reconstructed thanks
to the SPaR labeling scheme and the snapshot index. This
is complementary to the contribution of this paper, and we
base our clustering technique on their results, as explained
in Section 6.4.

9. CONCLUSION
We presented an XML-aware, XQuery-aware versioning

system which seamlessly integrates time to the data model.
This versioning system bridges the gap between data and
document versioning and allows for powerful queries against
versioned data. We implemented a first basic prototype of
this versioning system, based on the Sausalito Web Applica-
tion Server [8] and the Zorba XQuery engine [9]. The exten-
sions we made are backward-compatible with non-versioning
queries and there is no significant loss of performance for
traditional queries.

10. REFERENCES
[1] Adobe acrobat.com. http://acrobat.com.

[2] Apache subversion.
http://subversion.apache.org.

[3] git. http://git-scm.com/.

[4] Google docs. http://docs.google.com.

[5] MarkLogic. http://www.marklogic.com.

[6] Microsoft office web apps. http:
//office.microsoft.com/en-us/web-apps/.

[7] Oracle Flashback.
http://www.oracle.com/technetwork/
database/features/availability/
flashback-overview-082751.html.

[8] Sausalito: an XQuery Web Application Server.
http://sausalito.28msec.com.

[9] The Zorba XQuery Engine.
http://www.zorba-xquery.com.

[10] T. Amagasa, M. Yoshikawa, and S. Uemura. A Data
Model for Temporal XML Documents. In M. Ibrahim,
J. Küng, and N. Revell, editors, Database and Expert
Systems Applications, volume 1873 of Lecture Notes in
Computer Science, pages 334–344. Springer Berlin /
Heidelberg, 2000.

[11] C. Andrei, M. Brantner, D. Florescu, D. Graf,
D. Kossmann, and M. Zaharioudakis. Extending
XQuery with Collections, Indexes, and Integrity
Constraints. In XML Prague, Czech Republic, 2010.

[12] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu,
J. Robbie, and J. Siméon. XQuery 1.0: An XML
Query Language.
http://www.w3.org/TR/xquery/, jan 2007.

[13] D. Chamberlin, D. Engovatov, D. Florescu, G. Ghelli,
J. Melton, and J. Siméon. XQuery Scripting Extension
1.0 Working Draft.
http://www.w3.org/TR/xquery-sx-10/.

[14] D. Chamberlin, D. Florescu, and J. Robbie. XQuery
Update Facility.
http://www.w3.org/TR/xquery-update-10/.

[15] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically
structured information. In SIGMOD ’96: Proceedings
of the 1996 ACM SIGMOD international conference
on Management of data, pages 493–504, New York,
NY, USA, 1996. ACM.

[16] S.-Y. Chien, V. J. Tsotras, and C. Zaniolo. Version
Management of XML Documents. In The World Wide
Web and Databases: WebDB2000, 2000.

[17] S.-Y. Chien, V. J. Tsotras, C. Zaniolo, and D. Zhang.
Storing and Querying Multiversion XML Documents

using Durable Node Numbers. In 2nd International
Conference on Web Information Systems Engineering
(WISE), 2001.

[18] C. Combi, N. Lavarini, and B. Oliboni. Querying
semistructured temporal data. In T. Grust,
H. Höpfner, A. Illarramendi, S. Jablonski, M. Mesiti,
S. Müller, P.-L. Patranjan, K.-U. Sattler,
M. Spiliopoulou, and J. Wijsen, editors, Current
Trends in Database Technology – EDBT 2006, volume
4254 of Lecture Notes in Computer Science, pages
625–636. Springer Berlin / Heidelberg, 2006.

[19] C. E. Dyreson. Observing Transaction-Time Semantics
with TTXPath. In WISE ’01: Proceedings of the
Second International Conference on Web Information
Systems Engineering (WISE’01) Volume 1, page 193,
Washington, DC, USA, 2001. IEEE Computer Society.

[20] M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 Data Model
(XDM).
http://www.w3.org/TR/xpath-datamodel/.

[21] G. Fourny, D. Florescu, D. Kossmann, and
M. Zaharioudakis. A Time Machine for XML: PUL
Composition. In XML Prague, 2010.

[22] D. Gao and R. T. Snodgrass. Temporal Slicing in the
Evaluation of XML Queries. In In VLDB, 2003.

[23] J. Gray. Database Operating Systems: Storage and
Transactions. In SIGMOD Invited Talk, 2006.

[24] D. Lomet, R. Barga, M. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Transaction Time Support
Inside a Database Engine. In ICDE, 2006.

[25] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0
and XPath 2.0 Functions and Operators.
http://www.w3.org/TR/xpath-functions/.

[26] A. O. Mendelzon, F. Rizzolo, and A. Vaisman.
Indexing Temporal XML Documents. In proceedings of
the 30th international conference on Very Large
DataBases, pages 216–227, 2004.

[27] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: insert-friendly XML node
labels. In SIGMOD ’04: Proceedings of the 2004 ACM
SIGMOD international conference on Management of
data, pages 903–908, New York, NY, USA, 2004.
ACM.

[28] V. J. Tsotras and N. Kangelaris. The Snapshot Index:
An I/O-Optimal access method for timeslice queries.
Information Systems, 20(3):237–260, May 1995.

[29] F. Wang and C. Zaniolo. Temporal queries and version
management in XML-based document archives. Data
and Knowledge Engineering, 65(2):304–324, May 2008.

[30] M. Winslett. Jim Gray Speaks Out. Sigmod Record,
June 2008.

[31] V. Zholudev and M. Kohlhase. TNTBase: a Versioned
Storage for XML. In I. Mulberry Technologies, editor,
Proceedings of Balisage: The Markup Conference
2009, 2009.

