
RapiLog: Reducing System Complexity Through Verification

Gernot Heiser Etienne Le Sueur
Adrian Danis Aleksander Budzynowski

NICTA and UNSW, Sydney, Australia
gernot@nicta.com.au

Tudor-loan Salomie Gustavo Alonso
ETH Zurich, Switzerland

{tsalomie,alonso}@inf.ethz.ch

Abstract
Database management systems provide updates with guar-
anteed durability in the presence of OS crashes or power
failures. Durability is achieved by performing synchronous
writes to a transaction log on stable, non-volatile storage.
The procedure is expensive and several techniques have been
devised to ameliorate the impact on overall performance at
the cost of increased system complexity.

In this paper we explore the possibility of reducing the
system complexity around logging by leveraging verification
instead of using specialised/dedicated hardware or compli-
cated optimisations. The prototype system, RapiLog , uses
a dependable hypervisor based on seL4 to buffer log data
outside the database system and its OS, and performs the
physical disk writes asynchronously with respect to the op-
eration of the database. RapiLog guarantees that the log data
will eventually be written to the disk even if the database
system or the underlying OS crash or electrical power is cut.
We evaluate RapiLog with multiple open-source and com-
mercial database engines and find that performance is never
degraded (beyond the virtualisation overhead), and at times
is significantly improved.

1. Introduction
Databases in general and relational database engines in par-
ticular are a cornerstone of enterprise applications. They
provide an efficient way to store, manage and query large
amounts of data, freeing developers from having to imple-
ment data management functionality at the application level.

Critical to the operation of relational database engines is
the concept of a transaction—the reliable unit of work (read-
ing or writing information) done in a database that either
entirely completes or has no effect at all. When performing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Eurosys’13 April 15-17, 2013, Prague, Czech Republic
Copyright c© 2013 ACM 978-1-4503-1994-2/13/04. . . $15.00

transactions, the database management system (DBMS) is
required to enforce the ACID properties of atomicity, con-
sistency, isolation and durability (Härder and Reuter 1983).

In here, we are mainly interested in durability, a property
achieved by forcing all changes that occur in the database to
be first stored on a stable non-volatile medium before they
become visible outside the corresponding transaction. Com-
monly, a transaction log is used to ensure that committed
transactions can survive system failures. In the event of a
crash, once the system is recovered, the database state can
be reconstructed from the log.

The failure model used by DBMSes typically assumes a
perfect persistent storage (often achieved using RAID tech-
niques) but allows for power failures and fail-stop crashes of
the operating system (OS) to happen at any time. Commonly,
the durability of the transaction log is provided through
write-ahead logging (Mohan et al. 1992): when a client at-
tempts to commit a transaction, the DBMS stores the in-
tended changes to the database state in an append-only log
and the transaction is only assumed to be committed once it
is known that the log data is recorded on persistent storage.
Persistence is achieved by using synchronous (e.g. fsync)
operations on the log disk for transactions or groups of them.

However, synchronous writes to the transaction log limit
the performance of a DBMS to the speed of the log disk.
To ameliorate the situation, several techniques are used in
practice involving complex system designs (group commit,
log multiplexing) and/or specialised hardware (SSD logs).
Often, latency can be reduced and throughput significantly
increased if the log is written asynchronously, at the expense
of durability (see Figure 2, Section 2.3). For this reason,
commercial engines offer control over logging policy, to
let the user decide on the trade-off between durability and
performance.

In this paper we explore the option of using verified soft-
ware with strong guarantees instead of complex optimisa-
tion or specialised hardware. We propose RapiLog, a system
supporting asynchronous log writes without sacrificing dura-
bility. RapiLog buffers log writes so they can be written to
stable storage asynchronously to transaction processing. The
buffering is transparent to the DBMS and the OS hosting it.

RapiLog leverages recent advances in dependable

323

mailto:gernot@nicta.com.au
mailto:tsalomie@inf.ethz.ch

 0

 5

 10

 15

 20

 25

PostgreSQL MySQL DBMS X

T
h

ro
u

g
h

p
u

t
(k

T
x

/m
in

) Baseline
Rapilog

Figure 1. Performance of RapiLog vs standard logging op-
timisation techniques as implemented in 3 different database
engines. “Baseline” refers to the “virtualised” configuration
in Figure 9; higher is better.

systems, specifically the formal verification of OS
kernels (Klein et al. 2009) and synthesis of device
drivers (Ryzhyk et al. 2009) to protect the database log
data from system failures. Combined with a technique for
dealing with power failures, RapiLog provides an alternative
design to transaction logging. It reduces the overall system
complexity as it offloads most of the intricacies of durable
transaction operations outside of the DBMS.

RapiLog not only operates without performance loss (be-
yond virtualisation overhead): we actually observe signifi-
cant performance improvements for 3 different DBMS en-
gines (one of them a highly optimised commercial database),
as shown in Figure 1 (an excerpt from Figure 9 where the
complete results are presented).

This paper makes the following contributions:

• The demonstration that a robust system, relying on verifi-
cation and synthesis of its components, can replace costly
hardware and complex system optimisations.

• The design and implementation of RapiLog, based on
these principles: by design, RapiLog enables asyn-
chronous writes to a DBMS’s transaction-log without
compromising durability (Section 3), while its imple-
mentation transparently provides this benefit to unmod-
ified legacy DBMSes (Sections 4.1–4.2).

• A thorough evaluation of RapiLog on three DBMSes,
showing its performance benefits under typical work-
loads (Sections 5.3–5.5), and its ability to maintain trans-
action durability on external power failure by leverag-
ing the energy stored in power-supply capacitances (Sec-
tion 5.7).

2. Logging as a Performance Bottleneck
2.1 Durability in database engines
Consistency in a database is defined in terms of transac-
tions: a correct transaction executed in its entirety takes
the database from one consistent state to another consistent
state. Conventional database engines implement consistent
transactions by enforcing the ACID properties: atomicity,
consistency, isolation, and durability.

Atomicity ensures that transactions are executed in their
entirety and translates into mechanisms that will remove any
changes introduced by a transaction if the transaction does
not commit.

Consistency ensures that a transaction performs only le-
gal operations and it is enforced mainly through integrity
constraints over the schema.

Isolation ensures that transactions work only on a con-
sistent state of the database. Since the intermediate database
states created as transactions execute are not guaranteed to
be consistent, concurrency control mechanisms are used to
isolate a transaction from other concurrent transactions.

Durability enforces the long-term memory of the
database: every transaction that commits is persistently
stored. In the event of a system failure, durability ensures
that the state of the database and the effects of every com-
mitted transaction can be restored.1

In here, we will focus on durability.

2.2 Durability and logging
Durability relies on a variety of logging and recovery
schemes (e.g., physical vs. logical logging, and undo vs. redo
log records (Bernstein et al. 1987)) with commercial prod-
ucts providing a range of guarantees depending on what is
logged (e.g., in Microsoft SQL-Server (Microsoft 2012) the
full mode guarantees full recovery, while other modes pro-
vide less durability).

Most relevant for durability are redo logs (Lomet 1998;
Lomet and Tuttle 2003). By default, the redo log records of
a transaction must be written to disk before the database can
confirm that a transaction has been committed. The records
need to be written in the order the transactions commit and,
as a result, the latency of the transaction is often determined
by the latency of writing to disk.

Logging adds to the complexity of critical code. Further-
more, if durability is to be enforced, the throughput of the
database is limited by the I/O bandwidth to the log, which
can become a bottleneck for OLTP-style workloads (DeWitt
et al. 1984). Not surprisingly, trying to speed up database
transaction logs has been a very active area of research, with
many optimisations having been proposed in the literature
over the years (Gray and Reuter 1993). We will just mention
two of the most widely used ones, which illustrate well the
added complexity incurred in speeding up logging.

A first optimisation is group commit. Instead of forcing
to disk the records of each transaction individually, commit
requests can be slightly delayed and the records of several
transactions flushed in one single operation. Synchronous
logging issues an fsync system call after each group of
transactions. Group commit improves the efficiency of the
log disk by amortising the cost of setting up a write and the

1 Databases typically provide an even stronger property: point in time re-
covery, meaning that they can recover to any point in the committed history
of the database.

324

 10

 15

 20

 25

1 4 8 12 16 20 24 32 64

T
h
ro

u
g
h
p
u
t

(k
T

x
/m

in
)

Load (#clients)

(a) PostgreSQL

ASync & WC ON:
I/O bottleneck

 10

 15

 20

 25

1 4 8 12 16 20 24 32 64

Load (#clients)

(b) MySQL

ASync & WC ON:
CPU bottleneck

 10

 15

 20

 25

1 4 8 12 16 20 24 32 64

Load (#clients)

(c) DBMS X

ASync & WC ON:
CPU bottleneck

Sync, WC OFF
Sync, WC ON

Async, WC OFF
Async, WC ON

Figure 2. Throughput of three databases under the same offered load, with synchronous and asynchronous log writes and disk
cache on or off. Only the Sync, WC OFF configuration ensures durability. Error bars indicate standard deviations.

subsequent seek operations.
A second optimisation is log multiplexing, where the ac-

tual log is split among multiple (typically two) disks. Com-
mit entries for different transaction groups are written to dif-
ferent logs, so a group does not have to wait for the previous
one to complete.

2.3 The compromise: Asynchronous commits
Because durability is expensive, most engines today offer
the option to turn logging off to reduce the amount of data
logged or to make logging asynchronous. In all cases, perfor-
mance improves at the cost of potential losses in case of fail-
ures. With asynchronous logging or asynchronous commits,
transactions are allowed to commit before their log records
are recorded on disk – risking to lose the most recent trans-
actions in the case of a crash. Hardware support, in the form
of non-volatile memory, battery-backed caches or uninter-
ruptible power supplies (UPS) can be used to minimise the
potential losses.

Due to the complications that arise in case of fail-
ures, databases restrict when a commit can be made asyn-
chronous. Oracle, for instance, does not allow asynchronous
commits for distributed transactions (Oracle 2000), as it
leads to inconsistencies across nodes.

Another way of minimising the impact on performance
of synchronous logging is to turn on the disk’s write cache:
write requests get buffered on the disk drive rather than fully
flushed to the platters. Being another form of asynchrony,
this also sacrifices durability (McKusick 2006; Nightingale
et al. 2008) unless one ensures that these writes will end up
on disk and not be lost in the volatile disk cache in the case
of power failures.

The performance gain of using asynchronous writes can
be substantial. Figure 2 presents the throughput of three dif-
ferent databases when using synchronous and asynchronous
writes and when switching the disk cache on and off. The
databases are PostgreSQL, MySQL and a commercial en-

gine, dubbed DBMS X.2 All three systems are hosted on
Linux, and we use separate disks for the transaction log and
the actual database data. This is a widely-used configura-
tion, and allows us to evaluate the impact of logging in-
dependent of other I/O issues (see Section 5 for details).
The three engines show the same behaviour: enabling ei-
ther asynchronous commits (Async) or the disk’s write cache
(WC ON), leads to reduced commit latency and, in turn, to
higher throughput. The only configuration that offers dura-
bility (Sync, WC OFF), exhibits on all the engines signifi-
cantly lower throughput than the other configurations under
the same load conditions.

Figure 2 provides interesting insights into the behaviour
of the different engines. The dashed vertical lines in Fig-
ure 2 show the point at which a bottleneck is reached, and
the database goes into overload. Database operators try to
configure their system such that overload is avoided, as it
results in significantly increased transaction latencies.

PostgreSQL hits an I/O write bottleneck on the data disk
at 12 clients. MySQL and DBMS X hit a CPU bottleneck
(more than 90% CPU utilisation) at 16 clients. DBMS X,
being a highly optimised commercial engine, is the only
database that offers stable performance even after the bot-
tleneck is reached, with performance degrading significantly
for both PostgreSQL and MySQL in overload. Note also
that PostgreSQL performance fluctuates significantly under
overload conditions, as indicated by the large error bars in
Figure 2 (a) beyond 12 clients. This is a result of the data
disk bottleneck: as data writes are essentially random, there
are random opportunities for the disk to coalesce or merge
sequential write requests. As the bottleneck of MySQL and
DBMS X is caused by CPU load, performance remains pre-
dictable (evidenced by the small error bars).

2.4 Asynchronous commits without losses?
As shown in Figure 2, a significant increase in performance
can be gained by disabling fsync (Async) or enabling the

2 The license of the commercial system prohibits us from identifying it.

325

OS &
data disk

Log disk

Other hardware

Linux

OS
daemons DBMS

OS
device
drivers

Linux

Figure 3. Standard DBMS system architecture.

transaction log disk’s write cache (WC ON). However, the
performance improvements come at the expense of durabil-
ity: data can be permanently lost and transactions or data
integrity can no longer be guaranteed if the OS crashes or
power fails at an inopportune moment, leaving the database
in an inconsistent state. Recovering from such failures (if
no data was lost) without a consistent transaction log would
require manual intervention. Such manual recovery of the
database is a complex, expensive, and cumbersome task that
leaves the system unavailable for the duration of the recov-
ery process.

RapiLog aims to achieve the best of both worlds: reduc-
ing complexity while maximising throughput by using asyn-
chronous logging, but at the same time retaining durability
by guaranteeing that all log entries of committed transac-
tions will eventually be recorded on persistent storage, even
when OS or power failures occur. RapiLog makes log writes
logically synchronous but physically asynchronous.

The RapiLog prototype offers almost the same database
durability guarantees as a traditional setup for the transaction
log: it tolerates DBMS and OS crashes as well as power
failures, but (like a normal DBMS) does not protect against
OS bugs corrupting data before it reaches the disk. We are
presently weakening the guarantees in one point: traditional
DBMSes are protected against fail-stop hardware failures,
such as machine checks, which RapiLog does not yet handle
(but see the discussion in Section 7 on how this could be
approached).

3. RapiLog
Figure 3 shows how a typical database server is deployed
on a machine. Obviously, the simple “disks” may be large
storage arrays or network-attached storage.

In the standard architecture, the DBMS relies on the OS
(for example, Linux) to provide access to disks through
device drivers within the OS kernel. Often that is the only
involvement of the OS in the I/O traffic between database
and disk, as the database bypasses the OS and the file system.
Being a monolithic kernel, all device drivers on the system
run at the same privilege level and in the same address space;
hence if a driver crashes, it can bring the whole system down.

The core idea behind RapiLog is to reduce the complexity
and latency cost of durability by allowing the system to write

OS &
data disk

Log disk

Other hardware

Linux

Reliable
storage
server

DBMS
Other OS
services

seL4

Figure 4. Architecture of an ideal RapiLog implementation,
with the DBMS running natively on top of the dependable
microkernel, and an isolated component providing a reliable
storage service.

transactions to the log asynchronously. RapiLog achieves
this by avoiding the fsync operation which forces data
to be written to the log disk before allowing the DBMS
to continue operation. By eliminating synchronous I/O, the
system is less limited by the speed at which the log disk can
complete writes. Durability is not impacted, as long as we
can guarantee that the log data will eventually be recorded
on the disk, even in the case of a complete OS, DBMS or
power failure. In RapiLog we buffer the log data outside the
main OS, and achieve durability as long as we can guarantee
that the software, which maintains and protects the buffer
and effects its recording on disk, will operate correctly in
the event of failures of other system components.

3.1 RapiLog architecture
Figure 4 depicts an ideal scenario, with a DBMS running as
a native microkernel application, supported by microkernel-
based OS services. The log buffer and the software manag-
ing it are encapsulated in a separate address space and use
a separately encapsulated reliable storage server to write the
log data to disk. The formally-verified microkernel is guar-
anteed to never crash, even if user-level code misbehaves
in an arbitrary way. We can assure the correct behaviour
of the buffering software by traditional software engineer-
ing means (testing and code inspection) or by formal veri-
fication (linked to the formal specification of the microker-
nel (NICTA 2011)).

This architecture, besides supporting asynchronous log-
ging, can lead to a simplified DBMS implementation (po-
tentially resulting in further performance gains) by leverag-
ing the reliability of the underlying kernel. The proposed ap-
proach offers (a) the opportunity of eliminating a significant
part of the (complex) code devoted to these optimisations;
and (b) reducing the burden on database administrators to
decide how to configure and use the transaction log. In prin-
ciple, we could extend the approach to the page/block man-
agement of the database, aiming to reduce its complexity as
well as removing I/O overheads caused by high update rates.
It also supports the use of I/O services optimised for DBMS
needs (Stonebraker 1981).

326

OS &
data disk

Log disk

Other hardware

OS
device
drivers

DBMS
Virtual
disk

driver

Linux

Virtual disk VMM

seL4

Figure 5. Architecture of the prototype RapiLog implemen-
tation using an unmodified DBMS and a virtualised guest
operating system, Linux.

The drawback of the architecture in Figure 4 is the en-
gineering effort required for porting an existing DBMS. It
is therefore most suited when developing a DBMS from
scratch. Given the huge investment in legacy DBMSes, an
approach which aids retrofitting an existing DBMS for asyn-
chronous logging would be preferable.

Figure 5 shows the design of the prototype RapiLog sys-
tem, which supports unmodified legacy DBMSes (Heiser
et al. 2011). At the lowest level, we use the seL4 microker-
nel as a hypervisor on which to run a guest OS in a vir-
tual machine. A virtual-machine monitor (VMM) handles
interrupts and guest requests. Alongside the guest OS runs a
virtual disk (VD), which provides access to the transaction
log disk. A custom block driver (the virtual disk driver, VD
driver), loaded into the guest OS, relays I/O requests to the
VD through microkernel IPC. Synchronisation requests is-
sued by the guest force the VD driver to drain the guest’s
I/O queue to the VD but not necessarily trigger physical I/O.

By using this approach, any unmodified, legacy DBMS,
running on top of an unmodified guest OS (other than a
custom block driver) can obtain the benefits of RapiLog.

Our approach bears some semblance with Rio
Vista (Lowell and Chen 1997), which buffers transac-
tion logs in memory and uses the Rio file cache (Chen
et al. 1996) to protect the buffered log from OS crashes.
Rio is part of the OS, and as such not fully protected from
corruption, but achieves good isolation though mapping
OS code read-only and minimising dependence on OS
data structures through the use of physical addressing and
leveraging BIOS disk drivers.

3.2 Virtual disk architecture
The VD, as shown in more detail in Figure 6, provides
the RapiLog functionality. It essentially consists of the log
buffer (Memory buffers), a real disk driver (Disk driver),
and some minimal amount of management software (Virtual
disk process). Log data sent to the VD by the DBMS is
stored in the buffer, and once recorded there, the VD driver
informs the OS that data is recorded on persistent storage.
As a consequence, any fsync on the VD should only take

Virtual disk process
VMM

seL4

Disk
driver

Log disk

Linux VD request

Memory
buffers

Disk interrupts

Memory
mappings
to Linux

memcpy

Figure 6. Virtual disk architecture.

as long as a call to the hypervisor and a memcpy.
I/O completion will only be delayed (and an fsync

would only block) if the log buffer is full, in which case
completion notification will be deferred until some buffer
data has been flushed to disk.

3.3 Disk driver
It is common practice in DBMSes to keep the transaction
log on a device separate from the actual database. In the
architecture of Figure 5, this means that the database is kept
on a physical device which is under full control of the guest
OS (via a pass-through driver hosted inside the OS). The log
is kept on the second disk, which is under the control of the
VD. This approach is advantageous to RapiLog, as it means
that the log disk is used (almost) exclusively for sequential
writes. It implies that the log disk driver need only support
minimal functionality and can be optimised for sequential
writes, making for a very simple (and thus reliable) driver.

We must note, however, that RapiLog imposes stronger
dependability requirements on its disk driver than a standard
setup. The scenario of Figure 3 can tolerate fail-stop crashes
of the driver (as any OS component) at any time. RapiLog, in
turn, must guarantee that the log data will be flushed to disk
(eventually) even in the presence of crashes. This means that
the disk driver must not fail while there is still dirty log data
in the buffer. Hence it is important to have a highly reliable
disk driver.

Driver reliability is greatly enhanced by the potential sim-
plicity mentioned above. Even more attractive is the Ter-
mite approach (Ryzhyk et al. 2009), which synthesises de-
vice drivers from formal specifications of their interfaces,
practically eliminating the chance of introducing bugs when
coding the driver logic. A sufficiently simple driver even
lends itself to formal verification (Alkassar and Hillebrand
2008). Therefore we advocate the use of verified or synthe-
sised drivers for RapiLog.

3.4 Operation during power failure
The logging approach traditionally used in DBMSes has the
advantage that it also guards against corruption or data loss
resulting from power failures (provided that the disk does
not corrupt data). RapiLog, as discussed so far, would lose
data if the mains power is cut.

Protection against interruptions to the electrical power

327

supply does not tend to be a major issue for large database
installations, as data centres tend to deploy UPSes. These
provide some notification of imminent power loss, giving
time for machines to be gracefully shut down, hence avoid-
ing data loss. However, installing UPSes requires a signifi-
cant investment and, where the database is not expected to
remain operational through a power outage, this extra cost
should be avoided. Furthermore, a UPS needs to store sig-
nificant amounts of energy in batteries which are not 100%
efficient, losing some charge over time. Hence there is an
on-going energy overhead of keeping the batteries charged.

Disk write caches add another dimension to the problem
of power loss. Most contemporary disk drives have a cache
which can improve write performance by caching writes on
the disk itself. Additionally, the disk drive may reorder some
writes to improve write performance. Disk drives that report
write completions before the data actually makes it to the
disk platter can create problems for consistency: In the event
of a power failure, the write cache may not be completely
written to the disk and data could be lost (McKusick 2006).
Thus, DBMS tuning guides recommend disabling disk drive
write caches to ensure durability.

The problem can be mitigated another way, through the
use of a battery-backed write cache (Ousterhout and Douglis
1989), where the controller to which a disk drive is attached
provides the write cache instead of the disk drive itself, and
also provides some battery-backed, non-volatile storage to
act as the write cache. When power is restored, the data in
the battery-backed write cache can be written to the disk and
operation can continue normally. However, battery-backed
caches not only add to the cost of the disk, they also require
maintenance due to the limited life time of the batteries.

With the help of some very simple hardware support,
RapiLog can protect the DBMS from the effects of power
failures making a UPS redundant as far as maintaining the
ACID properties are concerned. The only requirement is a
notification from the hardware to the VD (via the hypervisor)
when a power outage is detected. Such an outage does not
result in the system shutting down immediately—capacitors
in the internal power supplies of computers store enough
energy to keep the system operational for a short period
(typically 100s of milliseconds, see Section 5.6).

This time is sufficient to write a fair amount of data to disk
(at least several MiB). By limiting the size of the buffer, we
can ensure that all log data can be safely written to disk when
a power outage is detected. In this case, RapiLog invokes
hypervisor mechanisms to prevent any other activities from
being scheduled, guaranteeing the VD exclusive access to
the machine until it finally shuts down from the loss of
power.

Some contemporary server platforms provide notifica-
tions of power outages, which RapiLog can use to determine
when normal system operation should cease and buffer write
back should be prioritised. Additionally, some power distri-

A

N

240V

7

6

4 DTRRTS

DSR

Relay Coil
Serial Port

E

Mains Input

To Computer

Figure 7. Simple device which can be used to signal power
outages.

bution units (PDUs) will send SNMP traps when events such
as outages or overloads occur, which can be used in similar
ways. For platforms that do not provide, or have access to,
a power outage notification, a simple device can be used to
generate an interrupt when power is lost (we built a proto-
type from a few standard components in about 20 minutes,
shown in Figure 7).

3.5 Performance benefits
While RapiLog’s primary aim is to show the potential for
reducing database system complexity, the architecture de-
scribed here can also improve DBMS performance in a num-
ber of ways.

Firstly, RapiLog is designed to avoid blocking I/O. Un-
like during normal DBMS operation, where at commit time,
transaction processing will block until the commit is logged
on disk, RapiLog is designed to let transaction processing
proceed concurrently while writing log data to disk. This
overlapping of processing with disk writes is the potentially
most significant performance benefit of RapiLog. Figure 2,
which compares normal DBMS operation (with fsync)
with operation where fsync calls are omitted, gives an idea
of the performance gains that can be achieved when asyn-
chronous writes are enabled.

Secondly, RapiLog makes better use of disk bandwidth.
Transaction log entries are frequently small. Indeed, many
log writes are only a few dozen bytes in size, though this is
highly dependent on the DBMS and workload. For example,
MySQL’s InnoDB engine writes only modified records to the
redo-transaction log, while more complex systems like Ora-
cle also pack transaction rollback information in the redo-log
entries—considerably increasing their size (Oracle 2008).

As disk writes must transfer whole blocks, a significant
portion of the available I/O bandwidth can potentially be
wasted when the disk is forced to write partial blocks. Rapi-
Log, in contrast, can defer disk writes until at least one full
block of log data is available for writing, in the case when
redo-log entries are smaller than the block size. During high
load, this batching behaviour causes the average disk trans-
fer to be larger and so numerous overheads are reduced—
fewer seeks are required, less time is spent initiating disk

328

transactions, and fewer interrupts are generated, relative to
the amount of data written.

4. Implementation
4.1 Overview
We implemented the RapiLog architecture using seL4 as
the dependable hypervisor. Being a general-purpose micro-
kernel, seL4 supports virtual machines through a user-level
virtual-machine monitor (VMM), similar to the approach
taken by NOVA (Steinberg and Kauer 2010).

For performance reasons, as well as to keep the imple-
mentation as simple as possible, we make extensive use of
memory sharing. Figure 8 shows the different components’
views of physical memory. At the top of the address space
is memory reserved for seL4. This is the only memory the
kernel ever accesses, and the kernel prevents user processes
from reading or writing any kernel data structures within this
region. The kernel treats all other memory as opaque.

VMM Linux VD

seL4 core 0

Guest physical

VD buffers

VD Code + data

VMM Code + data

RW RW RW

RW

RW

seL4 core 1

seL4 core n

seL4 only
seL4 only

seL4 only

RW
RW

RW

... ...

...

Linux

Figure 8. Memory map for the different components in the
RapiLog system.

Furthermore, the multicore implementation of seL4 uses
a multikernel approach (Baumann et al. 2009). This means
that each core runs a separate instance of seL4, with its
own private memory. Kernel instances do not communi-
cate directly, instead user-level code can send IPIs and use
a dedicated shared memory region for mailboxes. Hence,
the “seL4 only” memory region of Figure 8 is further par-
titioned between kernel images, as indicated by the different
colours. Our hardware platform supports hyper-threading.
At present we treat hardware threads as separate cores
(hence, the number of kernel images equals the number of
cores times the number of hardware threads per core). Each
thread appears to the SMP guest as a separate virtual CPU.
The VMM executes locally on each virtual CPU, emulat-
ing virtualisation-sensitive instructions without reference to
other virtual CPUs.

Compared to an approach which clusters a single kernel
image across hardware threads and protects it by a single
lock (von Tessin 2012), this approach potentially has a per-

formance penalty. However, we did not find that to create
problems (see Section 5.4), as in our use case there is very
little inter-core communication that requires seL4 mecha-
nisms.

The VMM and the VD both map all of the guest’s “phys-
ical” memory into their own address space. This allows the
VD to access the guest’s I/O buffers directly, just like a real
disk performing DMA. The VD and VMM each have their
own private memory (the former containing the buffer for
log data). These are separate to ensure isolation between the
two components. The VMM’s private memory is also parti-
tioned into per-core instances, just like the kernel’s memory,
with the exception of a small amount (indicated by a green
overlay in the figure) that needs to be shared for the state of
the guest, emulated devices and inter-VMM mailboxes. The
VD is not partitioned. While it has a server thread per core,
locks are used to make its execution mostly single-threaded,
greatly simplifying the implementation.

4.2 Details of operation
The VD driver in the guest OS communicates with the vir-
tual disk through the VMM using the VMCALL instruction.
The VMCALL is received by seL4 and sent to the VMM,
which then passes the message to the VD through the use of
synchronous IPC. Linux remains blocked on the VMCALL
until the VMM receives a completion response (via IPC)
from the VD. Linux will then be resumed with the response
placed in one of its registers.

When the guest OS requests a write operation, the VD
copies the data from the guest VM’s memory into one of the
buffers. The VD has access to all of Linux’s memory, hence
the VD driver can pass guest-physical addresses to the VD
(and receive them back). If insufficient buffer space is avail-
able, the VD indicates a temporary resource-unavailability
to the VD driver (which will then defer completion of any
fsync operation). Once buffer space is freed up, the VD
uses seL4 asynchronous notification to signal the VD driver,
which then re-tries the I/O. Retrying is transparent to Linux,
which only experiences occasional increased latencies of
what normally seems to be blindingly fast “physical” I/O.

As the write requests to the VD do not come directly
from the DBMS’s logging service but from the Linux block
layer, they are not necessarily sequential. While Linux uses
the deadline I/O scheduler, the mainly sequential log append
write requests are still intermixed with filesystem metadata
write requests (e.g. when an index block is added to the log
file’s inode).

In order to avoid losing the advantage of mostly sequen-
tial writes, the VD uses multiple non-overlapping buffers to
allow merging multiple sequential writes interspersed with
other writes. The VD adds to a buffer only if this keeps the
buffer’s data sequential, else it picks a free buffer. If there
are no clean buffers then we block the virtual writes until
one is available. The number and size of the memory buffers
is configurable as described in Section 5.6.

329

Normally the VD will only issue physical writes when
at least one complete disk block is cached in a buffer. It
prioritises large writes over short ones to optimise the use
of available disk bandwidth. In order to avoid starving small
writes, all buffers are flushed periodically (once a second).

This approach implies that the actual disk writes may
be performed in a different order than intended by the file
system. Re-ordering of writes does not result in incorrect
behaviour, as long as we can guarantee that all buffered data
will eventually reach the disk.

Additionally, the VD disables the log disk’s write cache,
to ensure that log data is persistent when the disk signals I/O
completion. This is important in order to guarantee stability
of the log data in the case of power failures (McKusick 2006;
Nightingale et al. 2008), as discussed in Section 3.4.

The VD must also be able to service read requests. These
happen as a result of Linux reading file-system meta data;
DBMS X also reads back log data during a checkpoint.
As the VD buffers act as a write-back cache, some care is
required in providing the correct data in response to read
requests, especially where only a portion of a read request is
in the VD buffers.

4.3 Dependability
Our implementation of RapiLog seeks to minimise the op-
portunities for failure of the components supporting the
durability property of the DBMS. Specifically, we use the
formally-verified seL4 kernel, which is guaranteed never to
crash (Klein et al. 2009). However, we note that the formal
verification of seL4 (and hence the dependability guaran-
tees) are strictly valid only for ARM processors. The x86
port used here therefore has at present somewhat lesser as-
surance of correctness. Also, we are using a multicore ver-
sion of seL4, and its verification is work in progress.3 How-
ever, even with these limitations, seL4 is a highly depend-
able platform, and the chance of any failure of seL4 is much
smaller than that of, say, a failure in Linux that leads to data
corruption, something the native DBMS setup does not pro-
tect against.

seL4 also has a proof of a core integrity property (Sewell
et al. 2011). It essentially states that the kernel will never
modify user memory (including memory used to hold kernel
data structures that represent user objects, such as address
spaces or threads) unless explicitly authorised through an
appropriate write capability. This means that, with an appro-
priate distribution of capabilities to the various subsystems,
the kernel is guaranteed to respect the memory map of Fig-
ure 8, and forces all system components to respect it—no
rogue writes are possible.

In addition, we take care to minimise the code size as well
as the privileges of critical software components. While the

3 Due to the multikernel approach, the verification essentially requires prov-
ing correct bootstrapping and that each instance respects the partitioning of
kernel memory.

VMM and VD (like the microkernel) run in VMX root mode,
only seL4 runs at kernel privilege (Ring 0) while the other
components run at user privilege (Ring 3). In addition, the
VMM and the VD are in separate address spaces.

Therefore, the correctness-critical VD is strongly isolated
from the (fairly complex) VMM. The two components com-
municate via seL4 message-passing IPC (as well as shared
memory buffers). This means that if the VMM crashes, the
VD, which does not depend on virtualisation services, can
continue to operate and flush any dirty buffer contents to disk
before the system shuts down. The VMM code is no more
critical than the Linux kernel code: while a bug could in the-
ory corrupt data, in practice this is unlikely, as the VMM
never touches any user data. Data corrupting bugs are more
likely to be hidden in the millions of lines of Linux code.
A simple crash of the VMM, like a crash of Linux, will not
impact durability.

The rest of the system runs in a virtual machine (i.e. in
VMX non-root mode). All required devices, except for the
log disk but including the data disk and the network, are
controlled by native drivers inside the Linux kernel (using
pass-through I/O). We use the system’s IOMMU to restrict
those drivers to the parts of physical memory accessible
to Linux (i.e. the part of RAM which is mapped to guest
physical memory).

We strive to keep the design and implementation of the
VD as simple as possible, in order to minimise the oppor-
tunity for introducing design flaws or implementation bugs.
As advocated in Section 3.3, our low-level disk driver is a
Termite-style synthesised driver, in order to further reduce
the likelihood of bugs in correctness-critical parts of the sys-
tem.

The driver was synthesised from formal specifications
of the OS and the device interfaces (Ryzhyk et al. 2009).
Unlike in this prior work, the device interface was not hand-
written from data sheets, but is a Simics model of the device
which was thoroughly tested against the behaviour of the
real device.

While the driver itself is not formally verified, the above
approach, combined with the simplicity of the driver, make
critical bugs highly unlikely (particularly compared with the
likelihood of Linux corrupting data).

Table 1 shows the size of the various components of Rapi-
Log. The total durability-critical part (the VD including the
disk driver) weighs in at only 1,619 LoC. Given the simplic-
ity and small size of the VD code, it should be possible to

Component Critical? LoC
Virtual disk driver (Linux) no 204
VMM no 6,058
Virtual disk (w/o driver) yes 1,174
Synthesised disk driver yes 445

Table 1. Code sizes for the components in RapiLog

330

achieve high reliability of this component through traditional
software-engineering methods (i.e. testing and code inspec-
tion). Even formal verification of the complete VD imple-
mentation is highly feasible (see Section 5.7 for details).
This would make the VD truly bullet-proof, but we have not
yet attempted this.

5. Evaluation
For evaluating the performance of the RapiLog prototype
we used the above mentioned three database engines, two
open source (MySQL and PostgreSQL) and a commercial
DBMS (DBMS X). We measure the performance gains of
RapiLog compared to baselines that have the same durability
guarantees, as well as some unsafe and hardware-enhanced
configurations. We also examine the sensitivity of RapiLog
performance on the size of the VD’s buffer, to ensure that it
can be kept small enough to flush to disk safely in the case of
power failure. We finally test the system’s ability to survive
power failures without database corruption.

5.1 Systems and platform
We host the database systems on Debian Linux, specifically
the stable squeeze release based on Linux kernel version
2.6.32. We chose this version, rather than the most recent
Linux kernel, because we believe that using a well-known,
stable, distribution release and kernel will allow for bet-
ter benchmark consistency and fewer bugs introduced from
other modifications to the kernel (Harji et al. 2011). From
the point of view of the RapiLog implementation, the actual
Linux version is fairly irrelevant as the block driver API is
very simple and unlikely to change much, but even if it did,
the adaptation of our virtual driver would be trivial.

We recompile the kernel from source, including only
those drivers that are necessary to provide the system’s re-
quired functionality. We use MySQL 5.1 and PostgreSQL
8.4, the versions that are distributed with the stable Debian
release.

Except where noted, RapiLog is configured with six
buffers of 512 KiB each. Group commit is enabled except
where explicitly mentioned, and no log multiplexing is used.

Our hardware platform is an IBM System X, model
x3200 M3; its specifications are shown in Table 2. The sys-

Feature Value
Processor model Intel Xeon X3450
Cores 4
Hardware threads 2 per core
Clock speed 2.66 GHz
L1 D-cache 32 KiB
L2 cache 256 KiB
L3 cache 8 MiB
Main memory 4 GiB

Table 2. Characteristics of the benchmarking platform.

tem has two-high performance 10,000 RPM Serial ATA disk
drives from Western Digital’s Raptor product line. We use
the ext3 filesystem for all benchmarks.

5.2 Configurations
We performed a thorough evaluation of the performance of
the three DBMSes, each with three different setups. The Na-
tive setup consists of the DBMS running on top of an (un-
virtualised) vanilla Linux installation, having the data and
the transaction log on two separate disks. The Virtualised
configuration runs Linux on top of seL4, with the DBMS
running on top of Linux, again with separate disks for data
and the transaction log. In this scenario, both disks are di-
rectly controlled by Linux drivers (I/O pass-through). By
comparing with Native, this configuration lets us factor out
the virtualisation overhead.

Finally the RapiLog setup extends the Virtualised setup,
by performing asynchronous, yet durable, disk writes to
the transaction log disk (as described in Section 3). For all
experiments (unless otherwise stated), the write-cache of the
transaction log disk is turned off to ensure durability. For the
same reason, the Native and Virtualised configurations use
synchronous writes to the transaction log.

For each of the 3 scenarios we test the performance of
PostgreSQL, MySQL and DBMS X, based on the TPC-
C Benchmark (TPCC). The dataset used is populated ac-
cording to the benchmark specification with 10 Warehouses
(yielding approx. 1 GiB of raw data and 1 GiB of indexed
data). The OLTP style workload specified by the bench-
mark is generated by external clients, having no think time
and performing synchronous requests to the DBMSes. The
reported performance metric is the DBMS’s throughput
measured in successful TPC-C NewOrder transactions per
minute.

We chose the TPC-C Benchmark because its many fast
update transactions will put pressure on the transaction log.
The TPC-C workload consists of a mix of 5 types of trans-
actions of which 3 perform updates on the database (and ac-
count for approx. 92% of the total executed transactions).

For each measurement we allow a warm-up period, af-
ter which the throughput and request response times are
recorded for the duration of the experiment. We tune all three
database engines in order to achieve their best native per-
formance given the workload and hardware described. Also,
for minimising the impact of checkpointing data from the
transaction log to the main data disk, we postpone this op-
eration as much as possible. Frequent checkpointing has as
main benefit a reduction in database recovery time in the
case of a crash, but has no impact on the durability of the
data. The actual number of checkpoints depend on operating
conditions, and different databases use different checkpoint-
ing strategies. Moreover, these are not logged, so we cannot
tell (without instrumenting the system) how many were per-
formed, other than that they are relatively infrequent.

331

 0

 5

 10

 15

 20

1 4 8 12 16 20 24 32 64

T
h
ro

u
g
h
p
u
t

(k
T

x
/m

in
)

(a) PostgreSQL

 0

 5

 10

 15

 20

1 4 8 12 16 20 24 32 64

(b) MySQL

 0

 5

 10

 15

 20

1 4 8 12 16 20 24 32 64

(c) DBMS X

Native, Sync, WC OFF
Virtualised, Sync, WC OFF

RapiLog, WC OFF

 0

 50

 100

 150

 200

1 4 8 12 16 20 24 32 64

A
v

g
.

re
sp

o
n

se
 t

im
e/

tx
 (

m
se

c)

Load (#clients)

 0

 50

 100

 150

 200

1 4 8 12 16 20 24 32 64

Load (#clients)

 0

 50

 100

 150

 200

1 4 8 12 16 20 24 32 64

Load (#clients)

Native, Sync, WC OFF
Virtualised, Sync, WC OFF

RapiLog, WC OFF

Figure 9. Performance of RapiLog compared to native and virtualised for PostgreSQL, MySQL and DBMS X.

5.3 Performance
Figure 9 shows a performance comparison of the Native,
Virtualised and RapiLog setups for the three investigated
databases. The top row of graphs show the throughput while
the lower row shows average response times.

As discussed in Section 2.3, PostgreSQL hits an I/O bot-
tleneck on the data disk. As long as the system is in its desir-
able, not overloaded state (which we refer to as underload),
we see that RapiLog’s throughput exceeds that of the Na-
tive and Virtualised setups; the performance improvement
of RapiLog is highest at 8 clients (69% over Native, 76%
over Virtualised) and averages 56%/62% over the underload
range.4 We also note that RapiLog hits the data disk I/O bot-
tleneck faster—performance is I/O-limited at 8 clients com-
pared to 12 for Native and Virtualised. RapiLog performance
does not drop below that of Virtualised (within the signifi-
cance indicated by the error bars).

Figure 9 (b) shows that for MySQL, RapiLog exceeds
the performance of Native (and Virtualised) under all load
conditions: the largest improvement is 110%/104% (Na-
tive/Virtualised) at 4 clients and the average improvement
over the underload region is 80%/79%. The apparent perfor-

4 These averages are obtained by comparing the areas under the curves from
zero load to the onset of overload.

mance improvement of Virtualised over Native in underload
is tiny and well within the error bars.

Finally, Figure 9 (c) shows that for DBMS X, Rapi-
Log similarly improves performance in underload. While the
gain is somewhat less than in the other cases, it still reaches
63%/63% at 8 clients, and averages 52%/53% over the un-
derloaded range. Performance under overload is (within the
variance of the results) identical to Virtualised and about 5%
below Native.

While the three databases exhibit different behaviour, two
general observations can be made:

Firstly, RapiLog never degrades performance (beyond
the virtualisation overhead).

Secondly, the RapiLog setup significantly improves the
overall throughput for all three databases (by having lower
latencies on performing the commits) where synchronous
I/O causes a bottleneck. In our benchmarking scenario, this
is the case in all non-overloaded workloads. The sweet spot
in which databases are normally configured to run is at the
high end of the non-overloaded regime, so these perfor-
mance improvements correspond to realistic usage scenar-
ios.

332

 0

 5

 10

 15

 20

1 4 8 12 16 20 24 32 64

T
h
ro

u
g
h
p
u
t

(k
T

x
/m

in
)

Load (#clients)

(a) PostgreSQL

 0

 5

 10

 15

 20

1 4 8 12 16 20 24 32 64

Load (#clients)

(b) MySQL

 0

 5

 10

 15

 20

1 4 8 12 16 20 24 32 64

Load (#clients)

(c) DBMS X

RapiLog
Virtualised, Sync, WC ON

Virtualised, ASync, WC OFF
Virtualised, ASync, WC ON

Figure 10. Effect of enabling unsafe asynchronous options for PostgreSQL, MySQL and DBMS X.

 10

 15

 20

1 4 8 12 16 20 24 32 64

T
h
ro

u
g
h
p
u
t

(k
T

x
/m

in
)

(a) PostgreSQL

 10

 15

 20

1 4 8 12 16 20 24 32 64

(b) MySQL

 10

 15

 20

1 4 8 12 16 20 24 32 64

(c) DBMS X

Native, Sync, WC OFF
Virtualised, WC OFF

RapiLog, WC OFF

Figure 11. Performance of RapiLog compared to native on an SSD for PostgreSQL, MySQL and DBMS X.

5.4 Virtualisation overhead
On average, the throughput degradation of Virtualised over
Native is 9% across the scenarios we measured, although the
actual figure depends somewhat on the nature of the load.
This figure seems comparable to commercial hypervisors.

To analyse further we profiled DMBS X with 32 clients
and measured the amount of time spent outside of Linux, as
shown in Table 3. Most of the CPU cores spend <1% of exe-
cution time outside of Linux, with the exception of one core,
which Linux picked to handle network interrupts. Overall,
about 1% of total CPU time (the average of the “%-age” row
in Table 3) is spent outside the virtual machine. This means
that there is little scope for reducing overheads by further
optimising seL4 or the VMM. The remaining 8% overheads
are likely hardware-imposed virtualisation overheads which
are independent of the hypervisor, such as the (compared
to Native) increased cost of handling TLB misses resulting
from nested page tables.

5.5 Performance optimisations vs. RapiLog
In order to evaluate how RapiLog performs compared to the
“corner-cutting” strategies, we ran several configurations of
the Virtualised DBMS using asynchronous commit logging:
(1) suppressing the use of fsync, (2) enabling the disk’s

Core 0 1 2 3 4 5 6 7
Secs 5.3 35 5.4 5.3 5.3 4.3 5.4 5.3
%-age 0.6 4.2 0.6 0.6 0.6 0.5 0.6 0.6

Table 3. Execution time spent outside the Linux VM on
each core for a 831 second benchmark.

write cache, and (3) the “belt & braces” configuration of both
of these. All of these reduce the cost of logging, but do not
provide durability in the case of a crash.

Figure 10 shows the results. Within sampling error, the
results are identical. This shows that RapiLog fully exploits
the performance potential of asynchronous I/O (without sac-
rificing durability).

Another approach to reducing logging cost is using a
faster persistent storage medium. Figure 11 shows the ef-
fect of using an SSD instead of a magnetic disk for per-
sistent log storage. Within measurement accuracy, RapiLog
performance equals Virtualised. Since the faster I/O device
removes the bottleneck, RapiLog does not gain performance
(but neither costs performance, other than the virtualisation
overhead). This shows that RapiLog is a software-only alter-
native to more expensive hardware.

Finally, it would be interesting to see whether RapiLog
can also remove the need for group commit. Our investiga-
tion of this point, shown in Figure 12, is inconclusive: for our
benchmarking scenario, group commit has no performance

 5

 10

 15

1 4 8 12 16 20 24 32 64

T
h
ro

u
g
h
p
u
t

(k
T

x
/m

in
)

Load (#clients)

RapiLog, GC
RapiLog, no GC
Virtualised, GC

Virtualised, no GC

Figure 12. Performance impact of enabling group commit
on DBMS X.

333

 0

 5

 10

 15

 20

256 512 1024T
h

ro
u

g
h

p
u

t
(k

T
x

/m
in

)

Buffer Size (KiB)

(a) PostgreSQL

 0

 5

 10

 15

 20

256 512 1024

Buffer Size (KiB)

(b) MySQL

 0

 5

 10

 15

 20

256 512 1024

Buffer Size (KiB)

(b) DBMS X

1 buffer
2 buffers

4 buffers
6 buffers

Figure 13. DBMS throughput as a function of buffer size
and number.

effect (within sampling accuracy) in either the RapiLog nor
the non-RapiLog case.

We can only speculate about the reasons, as we are not
aware of any deep analysis done of the benefits of group
commit on modern hardware. It is a feature designed decades
ago, at a time when I/O bandwidth and main memory sizes
were a fraction of what they are today. The potential gain of
group commit is a complex function of the load, the amount
of concurrent updates, and the I/O configuration. Therefore
we are not surprised that for common database sizes and
workloads, and most modern hardware, group commit no
longer has a significant performance advantage.

5.6 Virtual disk buffer size
The perfectly matched curves of Figure 10 indicate that the
buffers inside the VD were of sufficient size and did not
create a bottleneck under any load. While it is obviously
desirable to have sufficient buffer space to avoid contention,
they should not be too big either, as else we risk not being
able to flush them safely to disk if power is cut.

Figure 13 shows the results of a sensitivity analysis on the
size and number of buffers. For each DBMS we chose the
point where RapiLog shows the biggest performance gain
over native; this is where RapiLog’s buffering provides the
biggest benefit, and thus should be most sensitive to buffer
contention. We see that Postgres experiences a slight per-
formance drop when reducing buffer size from 512 KiB to
256 KiB, while the other two systems were completely in-
sensitive to buffer size in the investigated range. This justi-
fies our choice of using 512 KiB buffers.

The figure also shows that there was almost no sensitivity
to the total number of buffers in any of the DBMSes, so our
choice of six buffers is, in hindsight, excessive, and could be
reduced to increase the safety margin under power failure.

These results are in line with studies showing that
fewer than 100 log pages of the log tail are actually ac-
tive (Garcia-Molina and Salem 1992), which corresponds to
about 400 KiB in our case.

5.7 Reliability
We measured the power window of our test machine, i.e.,
the time interval from cutting the external power supply until
the machine stopped functioning, to be around 150 ms. This
is in line with tests on other machines, where we had found

window sizes of above 100 ms.
It is also in line with other recent research, which found

power windows in the range of 10–400 ms (Narayanan and
Hodson 2012). Note that the 10 ms minimum window found
by Narayanan and Hodson is not directly comparable to the
window relevant to RapiLog, for two reasons. Firstly, they
measure the power window from the time the PowerGood
signal (which indicates that the power rails are in spec) is de-
asserted by the hardware. The standard requires the power
rails remain in spec (and PowerGood asserted) for at least
17 ms after the mains input is cut (Intel 2000), so their 10 ms
window is really 27 ms for our purposes.

Furthermore, Narayanan and Hodson measure the power
window under maximum power draw (and the 17 ms guar-
anteed by the standard also assume maximum power). In
contrast, RapiLog explicitly reduces power draw to the bare
minimum when detecting a power emergency, by suspend-
ing all system activities other than the (mostly sequential)
writes to the log disk, including sleeping the CPU. Specif-
ically, we observe that while our system’s power draw can
exceed 160 W, during emergency buffer flushing it is only
around 80 W. The different power draw has a roughly linear
effect on the size of the power window (< 80 vs. 150 ms).
We can therefore estimate that even on the machine where
Narayanan and Hodson observed a window of 10 ms, for our
purposes it would be around 50 ms.

In order to test RapiLog’s ability to maintain durability
through power outages, we ran experiments where we cut
power during database operation. For each such test we cre-
ate a fresh database and proceed to insert rows with increas-
ing key values. At a later time we cut power to the server,
and record the last few transactions that were reported as
successful. The VD logs the completion of emergency flush-
ing of buffers to the console.

We cut power with the help of a USB-attached relay,
which is controlled from a laptop. After turning power off,
the laptop writes a character on a serial line connected to
the system under test, thus triggering an interrupt, which is
handled by the VD as a power emergency notification.

With our standard setup of 6 buffers of 512 KiB each, we
find that the VD never needs to flush more than 3 buffers,
which takes at most 20 ms, giving a healthy safety margin
within the 150 ms power-out window.

The maximum value of three dirty buffers indicates once
more that our six-buffer configuration is overkill. However,
this result also indicates that the system is in a way self-
limiting: it will not use more buffers than it really needs, so
this over-provisioning seems harmless.

Upon restarting the machine, we firstly perform a filesys-
tem check to allow the filesystem to recover from its log
journal and repair any errors. We then start the DBMS. The
DBMS detects the “unsafe” shutdown and proceeds to re-
cover the missing transactions from the transaction log. We
then compare the recovered database state with the expected

334

state, and determine whether the recovery was successful.
We performed 40 power-failure and recovery procedures

for each DBMS, and each time, the recovery of the commit-
ted state from the log was successful. The effectiveness of
the test became obvious when it failed on earlier versions of
the VD. We traced these errors to subtle bugs, such as mis-
placed write barriers—more indication that concurrency is
difficult to get right, and that formal verification should be
used where possible.

6. Discussion
Optimising the database transaction log has been an ongo-
ing task in the database community for many decades. While
earlier work focussed on more sophisticated transaction pro-
cessing (such as group commit) which inevitably increase
complexity, most recent advancements rely on hardware im-
provements that can reduce the latency of write operations
to the transaction log (e.g. solid-state drives).

Such hardware mechanisms add to cost (eg. solid-state
storage is much more expensive than disk), and thus are not
always applicable. Many real-world databases are therefore
run in an unsafe mode of operation (using asynchronous
logging).

RapiLog leverages advances in reliable operating sys-
tems, formal verification and device-driver synthesis, to en-
able the use of asynchronous I/O for logging without sac-
rificing durability. The above results show that RapiLog’s
performance is roughly at par with what can be achieved by
using unsafe operation modes (asynchronous logging or on-
disk write caches) or safe but expensive SSDs.

While we have demonstrated that RapiLog can be de-
ployed with unmodified legacy systems, a potentially more
interesting prospect is that it opens up the design space
of transaction logs. RapiLog allows modularising durabil-
ity management, and therefore enables factoring out com-
plex durability-related code from databases into the operat-
ing system, simplifying configuration, management and de-
ployment.

RapiLog is based on the assumption that the durability-
critical parts of the system will not fail. In Section 4.3 we
have discussed dependability threats, and explained how we
mitigate these by keeping design and implementation sim-
ple. Even better would be to actually verify the VD imple-
mentation.

We roughly (and conservatively) estimate an effort of 2–
3 person years. 3–6 months of this would be for developing
an appropriate concurrency model (something which had
been avoided in the verification of seL4 (Klein et al. 2009)).
Another 3–6 months we estimate will be needed for a device
model, and 1–2 person years for the actual verification of the
implementation using current techniques.

There is no guarantee that the system can be verified as
is. Conceivably, verification feasibility might require signif-
icant changes, which could possibly come at the expense of

performance. We consider this unlikely: the virtual disk has
been intentionally kept simple, and in our experience there
is nothing in its implementation which would cause serious
problems with verification. Furthermore, there is very little
(beyond a simple memcpy) in the VD that is particularly
performance critical, after all, it simulates a high-latency de-
vice.

Furthermore, we are exploring the use of code-and-proof
synthesis from domain-specific languages for system com-
ponents running on top of seL4. This has the potential of
dramatically reducing the cost of developing verified com-
ponents.

7. Conclusions and Future Work
We presented RapiLog, a prototype system exploring the
possibility of replacing synchronous logging by a verified
system enabling asynchronous log writes without compro-
mising durability. We have demonstrated that this can lead
to improved performance – of which even unmodified legacy
systems can benefit.

RapiLog achieves this by buffering writes in memory and
allowing the DBMS to continue transaction processing be-
fore those writes actually get recorded on disk. The under-
lying reliable microkernel ensures that log data gets safely
flushed to disk even if the DBMS or its host OS crash, or
external power is cut. Undeniably, this is just a first step but
a very promising one.

As mentioned in Section 2.4, the present implementation
of RapiLog cannot guarantee durability in the case of a
fail-stop processor fault, while a traditional database setup
handles this situation similar to an OS crash. We plan to
extend RapiLog to handle a machine-check exception by
rebooting the seL4 kernel, while taking care not to disturb
any non-kernel memory. After rebooting, the kernel can then
notify the VD (via a simulated power-down interrupt) of the
need to flush the log buffer and shut down cleanly for a cold
reboot.

RapiLog demonstrates that highly dependable software
can be an alternative to using costly hardware or complex
algorithms in defence against failures.

This observation also allows us, for example, to revisit the
architecture of database engines by externalising modules,
thereby opening many interesting opportunities for future
research. For instance, logging and the memory buffer used
in the storage manager of databases are tightly coupled.
Similar ideas as those used in RapiLog could be used in the
memory buffer to ensure that dirty pages are written to disk
in the event of failures, thereby simplifying both recovery
as well as logging. More long term, database collocation
in a virtualised environment raises the opportunity to turn
these externalised components into services for all instances
running on the same physical machine, thereby achieving
further optimisations and savings.

335

Acknowledgements
NICTA is funded by the Australian Government as repre-
sented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program. The work
of Tudor Salomie is partially funded by the Enterprise Com-
puting Center of ETH Zurich. We would like to thank Leonid
Ryzhyk, Adam Walker and John Keys for providing the Ter-
mite IDE driver, and Peter Chubb for building the power-out
notification device and helping in many places. We would fi-
nally like to thank the anonymous EuroSys reviewers, and
especially our shepherd Steven Hand, for insightful com-
ments which helped to improve the paper.

References
E. Alkassar and M. A. Hillebrand. Formal functional verification

of device drivers. In VSTTE 2008, pages 225–239, Toronto,
Canada, Oct. 2008. Springer.

A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Pe-
ter, T. Roscoe, A. Schüpbach, and A. Singhania. The multiker-
nel: A new OS architecture for scalable multicore systems. In
22nd SOSP, Big Sky, MT, USA, Oct. 2009.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
1987.

P. M. Chen, W. T. Ng, S. Chandra, C. M. Aycock, G. Rajamani, and
D. E. Lowell. The Rio file cache: Surviving operating system
crashes. In ASPLOS, pages 74–83, Oct. 1996.

D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stone-
braker, and D. A. Wood. Implementation techniques for main
memory database systems. In SIGMOD Conference, pages 1–8,
Boston, MA, USA, 1984.

H. Garcia-Molina and K. Salem. Main memory database systems:
An overview. IEEE Trans. Knowl. Data Eng., 4:509–516, 1992.

J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993. ISBN 1-55860-190-2.

T. Härder and A. Reuter. Principles of transaction-oriented
database recovery. ACM Comput. Surveys, 15:287–317, 1983.

A. S. Harji, P. A. Buhr, and T. Brecht. Our troubles with Linux and
why you should care. In 2nd APSys, pages 2:1–2:5, Shanghai,
China, 2011.

G. Heiser, L. Ryzhyk, M. von Tessin, and A. Budzynowski. What
if you could actually Trust your kernel? In 13th HotOS, Napa,
CA, USA, May 2011.

Intel. ATX/ATX12V power supply design guide.
http://www.formfactors.org/developer%5Cspecs%
5CATX ATX12V PS 1 1.pdf, 2000.

G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-

rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: Formal verifica-
tion of an OS kernel. In 22nd SOSP, pages 207–220, Big Sky,
MT, USA, Oct. 2009.

D. B. Lomet. Persistent applications using generalized redo recov-
ery. In ICDE, pages 154–163, 1998.

D. B. Lomet and M. R. Tuttle. A theory of redo recovery. In
SIGMOD Conference, pages 397–406, 2003.

D. E. Lowell and P. M. Chen. Free transactions with Rio Vista. In
16th SOSP, St. Malo, France, Oct. 1997.

M. K. McKusick. Disks from the perspective of a file system.
USENIX ;login:, 31(3):18–19, 2006.

Microsoft. Microsoft SQL Server documentation. http://msdn.
microsoft.com/en-us/library/ms189275.aspx, May 2012.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
Aries: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging. ACM
Trans. Database Syst., 17:94–162, 1992.

D. Narayanan and O. Hodson. Whole-system persistence. In 17th
ASPLOS, London, UK, Mar. 2012.

NICTA. seL4 download site. http://ertos.nicta.com.au/software/
seL4/, Jan. 2011. Kernel binary and spec.

E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn.
Rethink the sync. ACM Trans. Comp. Syst., 26:6:2–26, 2008.

Oracle. Applications users guide. http://docs.oracle.com/cd/
A85964 01/acrobat/115oaug.pdf, Sept. 2000.

Oracle. Database administrator’s guide. http://docs.oracle.com/cd/
B28359 01/server.111/b28310/onlineredo001.htm, Mar. 2008.

J. Ousterhout and F. Douglis. Beating the I/O bottleneck: a case for
log-structured file systems. SIGOPS Oper. Syst. Rev., 23:11–28,
Jan. 1989.

L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser. Automatic
device driver synthesis with Termite. In 22nd SOSP, Big Sky,
MT, USA, Oct. 2009.

T. Sewell, S. Winwood, P. Gammie, T. Murray, J. Andronick, and
G. Klein. seL4 enforces integrity. In Interactive Theorem
Proving, volume 6898 of LNCS, pages 325–340, Nijmegen, The
Netherlands, Aug. 2011.

U. Steinberg and B. Kauer. NOVA: A microhypervisor-based
secure virtualization architecture. In 5th EuroSys, Paris, France,
Apr. 2010.

M. Stonebraker. Operating system support for database manage-
ment. CACM, 24:412–418, 1981.

TPCC. TPC-C homepage. http://www.tpc.org/tpcc/.

M. von Tessin. The clustered multikernel: An approach to formal
verification of multiprocessor OS kernels. In 2nd WS on Systems
for Future Multi-core Architectures, Berne, Switzerland, Apr.
2012.

336

http://www.formfactors.org/developer%5Cspecs%5CATX_ATX12V_PS_1_1.pdf
http://www.formfactors.org/developer%5Cspecs%5CATX_ATX12V_PS_1_1.pdf
http://msdn.microsoft.com/en-us/library/ms189275.aspx
http://msdn.microsoft.com/en-us/library/ms189275.aspx
http://ertos.nicta.com.au/software/seL4/
http://ertos.nicta.com.au/software/seL4/
http://docs.oracle.com/cd/A85964_01/acrobat/115oaug.pdf
http://docs.oracle.com/cd/A85964_01/acrobat/115oaug.pdf
http://docs.oracle.com/cd/B28359_01/server.111/b28310/onlineredo001.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28310/onlineredo001.htm
http://www.tpc.org/tpcc/

	Introduction
	Logging as a Performance Bottleneck
	Durability in database engines
	Durability and logging
	The compromise: Asynchronous commits
	Asynchronous commits without losses?

	RapiLog
	RapiLog architecture
	Virtual disk architecture
	Disk driver
	Operation during power failure
	Performance benefits

	Implementation
	Overview
	Details of operation
	Dependability

	Evaluation
	Systems and platform
	Configurations
	Performance
	Virtualisation overhead
	Performance optimisations vs. RapiLog
	Virtual disk buffer size
	Reliability

	Discussion
	Conclusions and Future Work

